346 research outputs found

    Increased RPA1 gene dosage affects genomic stability potentially contributing to 17p13.3 duplication syndrome

    Get PDF
    A novel microduplication syndrome involving various-sized contiguous duplications in 17p13.3 has recently been described, suggesting that increased copy number of genes in 17p13.3, particularly PAFAH1B1, is associated with clinical features including facial dysmorphism, developmental delay, and autism spectrum disorder. We have previously shown that patient-derived cell lines from individuals with haploinsufficiency of RPA1, a gene within 17p13.3, exhibit an impaired ATR-dependent DNA damage response (DDR). Here, we show that cell lines from patients with duplications specifically incorporating RPA1 exhibit a different although characteristic spectrum of DDR defects including abnormal S phase distribution, attenuated DNA double strand break (DSB)-induced RAD51 chromatin retention, elevated genomic instability, and increased sensitivity to DNA damaging agents. Using controlled conditional over-expression of RPA1 in a human model cell system, we also see attenuated DSB-induced RAD51 chromatin retention. Furthermore, we find that transient over-expression of RPA1 can impact on homologous recombination (HR) pathways following DSB formation, favouring engagement in aberrant forms of recombination and repair. Our data identifies unanticipated defects in the DDR associated with duplications in 17p13.3 in humans involving modest RPA1 over-expression

    Telomerase Inhibition Targets Clonogenic Multiple Myeloma Cells through Telomere Length-Dependent and Independent Mechanisms

    Get PDF
    Plasma cells constitute the majority of tumor cells in multiple myeloma (MM) but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC). These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities.Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1) as revealed by quantitative real-time PCR.Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and KrΓΌppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Non-invasive management of peripheral arterial disease.

    No full text
    BACKGROUND: Peripheral arterial disease (PAD) is common and symptoms can be debilitating and lethal. Risk management, exercise, radiological and surgical intervention are all valuable therapies, but morbidity and mortality rates from this disease are increasing. Circulatory enhancement can be achieved using simple medical electronic devices, with claims of minimal adverse side effects. The evidence for these is variable, prompting a review of the available literature. METHODS: Embase and Medline were interrogated for full text articles in humans and written in English. Any external medical devices used in the management of peripheral arterial disease were included if they had objective outcome data. RESULTS: Thirty-one papers met inclusion criteria, but protocols were heterogenous. The medical devices reported were intermittent pneumatic compression (IPC), electronic nerve (NMES) or muscle stimulators (EMS), and galvanic electrical dressings. In patients with intermittent claudication, IPC devices increase popliteal artery velocity (49-70Β %) and flow (49-84Β %). Gastrocnemius EMS increased superficial femoral artery flow by 140Β %. Over 4.5-6 months IPC increased intermittent claudication distance (ICD) (97-150Β %) and absolute walking distance (AWD) (84-112Β %), with an associated increase in quality of life. NMES of the calf increased ICD and AWD by 82Β % and 61-150Β % at 4 weeks, and 26Β % and 34Β % at 8 weeks. In patients with critical limb ischaemia IPC reduced rest pain in 40-100Β % and was associated with ulcer healing rates of 26Β %. IPC had an early limb salvage rate of 58-83Β % at 1-3 months, and 58-94Β % at 1.5-3.5Β years. No studies have reported the use of EMS or NMES in the management of CLI. CONCLUSION: There is evidence to support the use of IPC in the management of claudication and CLI. There is a building body of literature to support the use of electrical stimulators in PAD, but this is low level to date. Devices may be of special benefit to those with limited exercise capacity, and in non-reconstructable critical limb ischaemia. Galvanic stimulation is not recommended

    Single left coronary artery with separate origins of proximal and distal right coronary arteries from left anterior descending and circumflex arteries – a previously undescribed coronary circulation

    Get PDF
    A single left coronary artery with right coronary artery arising from either left main stem (LMS) or left anterior descending artery (LAD) or circumflex artery (Cx) is an extremely rare coronary anomaly. This is the first report of separate origins of proximal and distal RCA from LAD and circumflex arteries respectively in a patient with a single left coronary artery. This 57 year old patient presented with unstable angina and severe stenotic disease of LAD and Cx arteries and underwent urgent successful quadruple coronary artery bypass grafting. The anomalies of right coronary artery in terms of their origin, number and distribution are reviewed

    Consequences of inducing intrinsic disorder in a high-affinity protein-protein interaction

    Get PDF
    The kinetic and thermodynamic consequences of intrinsic disorder in protein-protein recognition are controversial. We address this by inducing one partner of the high-affinity colicin E3 rRNase domain-Im3 complex (Kd β‰ˆ 10(-12) M) to become an intrinsically disordered protein (IDP). Through a variety of biophysical measurements, we show that a single alanine mutation at Tyr507 within the hydrophobic core of the isolated colicin E3 rRNase domain causes the enzyme to become an IDP (E3 rRNase(IDP)). E3 rRNase(IDP) binds stoichiometrically to Im3 and forms a structure that is essentially identical to the wild-type complex. However, binding of E3 rRNase(IDP) to Im3 is 4 orders of magnitude weaker than that of the folded rRNase, with thermodynamic parameters reflecting the disorder-to-order transition on forming the complex. Critically, pre-steady-state kinetic analysis of the E3 rRNase(IDP)-Im3 complex demonstrates that the decrease in affinity is mostly accounted for by a drop in the electrostatically steered association rate. Our study shows that, notwithstanding the advantages intrinsic disorder brings to biological systems, this can come at severe kinetic and thermodynamic cost

    Adenoviral Vector Driven by a Minimal Rad51 Promoter Is Selective for p53-Deficient Tumor Cells

    Get PDF
    Background: The full length Rad51 promoter is highly active in cancer cells but not in normal cells. We therefore set out to assess whether we could confer this tumor-selectivity to an adenovirus vector. Methodology/Principal Findings: Expression of an adenovirally-vectored luciferase reporter gene from the Rad51 promoter was up to 50 fold higher in cancer cells than in normal cells. Further evaluations of a panel of truncated promoter mutants identified a 447 bp minimal core promoter element that retained the full tumor selectivity and transcriptional activity of the original promoter, in the context of an adenovirus vector. This core Rad51 promoter was highly active in cancer cells that lack functional p53, but less active in normal cells and in cancer cell lines with intact p53 function. Exogenous expression of p53 in a p53 null cell line strongly suppressed activity of the Rad51 core promoter, underscoring the selectivity of this promoter for p53-deficient cells. Follow-up experiments showed that the p53-dependent suppression of the Rad51 core promoter was mediated via an indirect, p300 coactivator dependent mechanism. Finally, transduction of target cells with an adenovirus vector encoding the thymidine kinase gene under transcriptional control of the Rad51 core promoter resulted in efficient killing of p53 defective cancer cells, but not of normal cells, upon addition of ganciclovir. Conclusions/Significance: Overall, these experiments demonstrated that a small core domain of the Rad51 promoter ca
    • …
    corecore