769 research outputs found
The Jefferson Lab Frozen Spin Target
A frozen spin polarized target, constructed at Jefferson Lab for use inside a
large acceptance spectrometer, is described. The target has been utilized for
photoproduction measurements with polarized tagged photons of both longitudinal
and circular polarization. Protons in TEMPO-doped butanol were dynamically
polarized to approximately 90% outside the spectrometer at 5 T and 200--300 mK.
Photoproduction data were acquired with the target inside the spectrometer at a
frozen-spin temperature of approximately 30 mK with the polarization maintained
by a thin, superconducting coil installed inside the target cryostat. A 0.56 T
solenoid was used for longitudinal target polarization and a 0.50 T dipole for
transverse polarization. Spin-lattice relaxation times as high as 4000 hours
were observed. We also report polarization results for deuterated propanediol
doped with the trityl radical OX063.Comment: 11 pages, 12 figures, preprint submitted to Nuclear Instruments and
Methods in Physics Research, Section
Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays
A proximity focusing Cherenkov imager called CHERCAM, has been built for the
charge measurement of nuclear cosmic rays with the CREAM instrument. It
consists of a silica aerogel radiator plane across from a detector plane
equipped with 1,600 1" diameter photomultipliers. The two planes are separated
by a ring expansion gap. The Cherenkov light yield is proportional to the
charge squared of the incident particle. The expected relative light collection
accuracy is in the few percents range. It leads to an expected single element
separation over the range of nuclear charge Z of main interest 1 < Z < 26.
CHERCAM is designed to fly with the CREAM balloon experiment. The design of the
instrument and the implemented technical solutions allowing its safe operation
in high altitude conditions (radiations, low pressure, cold) are presented.Comment: 24 pages, 19 figure
The Origin of Galactic Cosmic Rays
Motivated by recent measurements of the major components of the cosmic
radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a
model in which there are two distinct kinds of cosmic ray accelerators in the
galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per
nucleon suggests that these two elements do not have the same spectrum of
magnetic rigidity over this entire region and that these two dominant elements
therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures,
uuencode
An Environmental Science and Engineering Framework for Combating Antimicrobial Resistance
On June 20, 2017, members of the environmental engineering and science (EES) community convened at the Association of Environmental Engineering and Science Professors (AEESP) Biennial Conference for a workshop on antimicrobial resistance. With over 80 registered participants, discussion groups focused on the following topics: risk assessment, monitoring, wastewater treatment, agricultural systems, and synergies. In this study, we summarize the consensus among the workshop participants regarding the role of the EES community in understanding and mitigating the spread of antibiotic resistance via environmental pathways. Environmental scientists and engineers offer a unique and interdisciplinary perspective and expertise needed for engaging with other disciplines such as medicine, agriculture, and public health to effectively address important knowledge gaps with respect to the linkages between human activities, impacts to the environment, and human health risks. Recommendations that propose priorities for research within the EES community, as well as areas where interdisciplinary perspectives are needed, are highlighted. In particular, risk modeling and assessment, monitoring, and mass balance modeling can aid in the identification of “hot spots” for antibiotic resistance evolution and dissemination, and can help identify effective targets for mitigation. Such information will be essential for the development of an informed and effective policy aimed at preserving and protecting the efficacy of antibiotics for future generations
Recommended from our members
A multilevel neo-institutional analysis of infection prevention and control in English hospitals: coerced safety culture change?
Despite committed policy, regulative and professional efforts on healthcare safety, little is known about how such macro-interventions permeate organisations and shape culture over time. Informed by neo-institutional theory, we examined how inter-organisational influences shaped safety practices and inter-subjective meanings following efforts for coerced culture change. We traced macro-influences from 2000 to 2015 in infection prevention and control (IPC). Safety perceptions and meanings were inductively analysed from 130 in-depth qualitative interviews with senior- and middle-level managers from 30 English hospitals. A total of 869 institutional interventions were identified; 69% had a regulative component. In this context of forced implementation of safety practices, staff experienced inherent tensions concerning the scope of safety, their ability to be open and prioritisation of external mandates over local need. These tensions stemmed from conflicts among three co-existing institutional logics prevalent in the NHS. In response to requests for change, staff flexibly drew from a repertoire of cognitive, material and symbolic resources within and outside their organisations. They crafted 'strategies of action', guided by a situated assessment of first-hand practice experiences complementing collective evaluations of interventions such as 'pragmatic', 'sensible' and also 'legitimate'. Macro-institutional forces exerted influence either directly on individuals or indirectly by enriching the organisational cultural repertoire
Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude
We report here the measurements of the energy spectra of atmospheric muons
and of the cosmic ray primary proton and helium nuclei in a single experiment.
These were carried out using the MASS superconducting spectrometer in a balloon
flight experiment in 1991. The relevance of these results to the atmospheric
neutrino anomaly is emphasized. In particular, this approach allows
uncertainties caused by the level of solar modulation, the geomagnetic cut-off
of the primaries and possible experimental systematics to be decoupled in the
comparison of calculated fluxes of muons to measured muon fluxes. The muon
observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886
g/cmsquared, respectively. The proton and helium primary measurements cover the
rigidity range from 3 to 100 GV, in which both the solar modulation and the
geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to
appear in Phys. Rev.
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
- …