114 research outputs found

    Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    Full text link
    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena due to their charge stability and robust electronic properties after thermal cycling. However these devices require a large top-gate which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here we demonstrate rf reflectometry is possible in an undoped SET.Comment: Four pages, three figures, one supplementary fil

    Hybrid architecture for shallow accumulation mode AlGaAs/GaAs heterostructures with epitaxial gates

    Get PDF
    Accumulation mode devices with epitaxially grown gates have excellent electrical stability due to the absence of dopant impurities and surface states. We overcome typical fabrication issues associated with epitaxially gated structures (e.g., gate leakage and high contact resistance) by using separate gates to control the electron densities in the Ohmic and Hall bar regions. This hybrid gate architecture opens up a way to make ultrastable nanoscale devices where the separation between the surface gates and the 2D electron gas is small. In this work, we demonstrate that the hybrid devices made from the same wafer have reproducible electrical characteristics, with identical mobility and density traces over a large range of 2D densities. In addition, thermal cycling does not influence the measured electrical characteristics. As a demonstration of concept, we have fabricated a hybrid single-electron transistor on a shallow (50 nm) AlGaAs/GaAs heterostructure that shows clear Coulomb blockade oscillations in the low temperature conductance.This project was supported by the Australian Government under the Australia-India Strategic Research Fund and by the Australian Research Council (ARC) DP scheme. A.R.H. acknowledges an ARC Outstanding Researcher Award. Devices were fabricated using the facilities at the NSW Node of the Australian National Fabrication Facility (ANFF). J.R., A.L., and A.D.W. acknowledge support from Mercur Pr-2013-0001, BMBF-Q.com-H 16KIS0109, and DFH/UFA CDFA-05-06.Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in MacLeod SJ, See AM, Hamilton AR, Farrer I, Ritchie DA, Ritzmann J, Ludwig A, Wieck AD, Applied Physics Letters 106, 012105 (2015) and may be found at http://dx.doi.org/10.1063/1.4905210

    Absence of evidence or evidence of absence: Reflecting on therapeutic implementations of attentional bias modification

    Get PDF
    Attentional bias modification (ABM) represents one of a number of cognitive bias modification techniques which are beginning to show promise as therapeutic interventions for emotional pathology. Numerous studies with both clinical and non-clinical populations have now demonstrated that ABM can reduce emotional vulnerability. However, some recent studies have failed to achieve change in either selective attention or emotional vulnerability using ABM methodologies, including a recent randomised controlled trial by Carlbring et al. Some have sought to represent such absence of evidence as a sound basis not to further pursue ABM as an online intervention. While these findings obviously raise questions about the specific conditions under which ABM procedures will produce therapeutic benefits, we suggest that the failure of some studies to modify selective attention does not challenge the theoretical and empirical basis of ABM. The present paper seeks to put these ABM failure s in perspective within the broader context of attentional bias modification research. In doing so it is apparent that the current findings and future prospects of ABM are in fact very promising, suggesting that more research in this area is warranted, not less

    Ensemble evaluation of hydrological model hypotheses

    Get PDF
    It is demonstrated for the first time how model parameter, structural and data uncertainties can be accounted for explicitly and simultaneously within the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. As an example application, 72 variants of a single soil moisture accounting store are tested as simplified hypotheses of runoff generation at six experimental grassland field-scale lysimeters through model rejection and a novel diagnostic scheme. The fields, designed as replicates, exhibit different hydrological behaviors which yield different model performances. For fields with low initial discharge levels at the beginning of events, the conceptual stores considered reach their limit of applicability. Conversely, one of the fields yielding more discharge than the others, but having larger data gaps, allows for greater flexibility in the choice of model structures. As a model learning exercise, the study points to a “leaking” of the fields not evident from previous field experiments. It is discussed how understanding observational uncertainties and incorporating these into model diagnostics can help appreciate the scale of model structural error

    Sex, Trust, and Corporate Boards

    Get PDF
    This essay collects and interprets social science research on sex and trust and uses this work to shed new light on the emerging case for gender diversity on corporate boards. Specifically, the essay describes research findings that indicate (1) that men and women trust and are trustworthy on different bases and (2) the existence of a bias against women in corporate leadership positions. Based on this research and current legal scholarship on corporate governance, the essay asserts that gender diversity on corporate boards may be desirable but difficult to attain. The essay also calls for more targeted research on the links among sex, trusting behavior, trustworthiness, and corporate board membership

    Is it the boundaries or disorder that dominates electron transport in semiconductor `billiards'?

    Full text link
    Semiconductor billiards are often considered as ideal systems for studying dynamical chaos in the quantum mechanical limit. In the traditional picture, once the electron's mean free path, as determined by the mobility, becomes larger than the device, disorder is negligible and electron trajectories are shaped by specular reflection from the billiard walls alone. Experimental insight into the electron dynamics is normally obtained by magnetoconductance measurements. A number of recent experimental studies have shown these measurements to be largely independent of the billiards exact shape, and highly dependent on sample-to-sample variations in disorder. In this paper, we discuss these more recent findings within the full historical context of work on semiconductor billiards, and offer strong evidence that small-angle scattering at the sub-100 nm length-scale dominates transport in these devices, with important implications for the role these devices can play for experimental tests of ideas in quantum chaos.Comment: Submitted to Fortschritte der Physik for special issue on Quantum Physics with Non-Hermitian Operator

    Biased Saccadic Responses to Emotional Stimuli in Anxiety: An Antisaccade Study.

    Get PDF
    Research suggests that anxiety is maintained by an attentional bias to threat, and a growing base of evidence suggests that anxiety may additionally be associated with the deficient attentional processing of positive stimuli. The present study sought to examine whether such anxiety-linked attentional biases were associated with either stimulus driven or attentional control mechanisms of attentional selectivity. High and low trait anxious participants completed an emotional variant of an antisaccade task, in which they were required to prosaccade towards, or antisaccade away from a positive, neutral or threat stimulus, while eye movements were recorded. While low anxious participants were found to be slower to saccade in response to positive stimuli, irrespectively of whether a pro- or antisaccade was required, such a bias was absent in high anxious individuals. Analysis of erroneous antisaccades further revealed at trend level, that anxiety was associated with reduced peak velocity in response to threat. The findings suggest that anxiety is associated with the aberrant processing of positive stimuli, and greater compensatory efforts in the inhibition of threat. The findings further highlight the relevance of considering saccade peak velocity in the assessment of anxiety-linked attentional processing

    Challenges in using land use and land cover data for global change studies

    Get PDF
    Land use and land cover data play a central role in climate change assessments. These data originate from different sources and inventory techniques. Each source of land use/cover data has its own domain of applicability and quality standards. Often data are selected without explicitly considering the suitability of the data for the specific application, the bias originating from data inventory and aggregation, and the effects of the uncertainty in the data on the results of the assessment. Uncertainties due to data selection and handling can be in the same order of magnitude as uncertainties related to the representation of the processes under investigation. While acknowledging the differences in data sources and the causes of inconsistencies, several methods have been developed to optimally extract information from the data and document the uncertainties. These methods include data integration, improved validation techniques and harmonization of classification systems. Based on the data needs of global change studies and the data availability, recommendations are formulated aimed at optimal use of current data and focused efforts for additional data collection. These include: improved documentation using classification systems for land use/cover data; careful selection of data given the specific application and the use of appropriate scaling and aggregation methods. In addition, the data availability may be improved by the combination of different data sources to optimize information content while collection of additional data must focus on validation of available data sets and improved coverage of regions and land cover types with a high level of uncertainty. Specific attention in data collection should be given to the representation of land management (systems) and mosaic landscape

    Detection and verification of malting quality QTLs using wild barley introgression lines

    Get PDF
    A malting quality quantitative trait locus (QTL) study was conducted using a set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs). Each S42IL harbors a single marker-defined chromosomal segment from the wild barley accession ‘ISR 42-8’ (Hordeum vulgare ssp. spontaneum) within the genetic background of the elite spring barley cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare). The aim of the study was (1) to verify genetic effects previously identified in the advanced backcross population S42, (2) to detect new QTLs, and (3) to identify S42ILs exhibiting multiple QTL effects. For this, grain samples from field tests in three different environments were subjected to micro malting. Subsequently, a line × phenotype association study was performed with the S42ILs in order to localize putative QTL effects. A QTL was accepted if the trait value of a particular S42IL was significantly (P < 0.05) different from the recurrent parent as a control, either across all tested environments or in a particular environment. For eight malting quality traits, altogether 40 QTLs were localized, among which 35 QTLs (87.5%) were stable across all environments. Six QTLs (15.0%) revealed a trait improving wild barley effect. Out of 36 QTLs detected in a previous advanced backcross QTL study with the parent BC2DH population S42, 18 QTLs (50.0%) could be verified with the S42IL set. For the quality parameters α-amylase activity and Hartong 45°C, all QTLs assessed in population S42 were verified by S42ILs. In addition, eight new QTL effects and 17 QTLs affecting two newly investigated traits were localized. Two QTL clusters harboring simultaneous effects on eight and six traits, respectively, were mapped to chromosomes 1H and 4H. In future, fine-mapping of these QTL regions will be conducted in order to shed further light on the genetic basis of the most interesting QTLs
    corecore