955 research outputs found

    Algebraic fidelity decay for local perturbations

    Full text link
    From a reflection measurement in a rectangular microwave billiard with randomly distributed scatterers the scattering and the ordinary fidelity was studied. The position of one of the scatterers is the perturbation parameter. Such perturbations can be considered as {\em local} since wave functions are influenced only locally, in contrast to, e. g., the situation where the fidelity decay is caused by the shift of one billiard wall. Using the random-plane-wave conjecture, an analytic expression for the fidelity decay due to the shift of one scatterer has been obtained, yielding an algebraic 1/t1/t decay for long times. A perfect agreement between experiment and theory has been found, including a predicted scaling behavior concerning the dependence of the fidelity decay on the shift distance. The only free parameter has been determined independently from the variance of the level velocities.Comment: 4 pages, 5 figure

    Fidelity decay for local perturbations: microwave evidence for oscillating decay exponents

    Get PDF
    We study fidelity decay in classically chaotic microwave billiards for a local, piston-like boundary perturbation. We experimentally verify a predicted non-monotonic cross-over from the Fermi Golden Rule to the escape-rate regime of the Loschmidt echo decay with increasing local boundary perturbation. In particular, we observe pronounced oscillations of the decay rate as a function of the piston position which quantitatively agree with corresponding theoretical results based on a refined semiclassical approach for local boundary perturbations

    Distribution of the S-matrix in chaotic microwave cavities with direct processes and absorption

    Full text link
    We quantify the presence of direct processes in the S-matrix of chaotic microwave cavities with absorption in the one-channel case. To this end the full distribution P_S(S) of the S-matrix, i.e. S=\sqrt{R}e^{i\theta}, is studied in cavities with time-reversal symmetry for different antenna coupling strengths T_a or direct processes. The experimental results are compared with random-matrix calculations and with numerical simulations based on the Heidelberg approach including absorption. The theoretical result is a generalization of the Poisson kernel. The experimental and the numerical distributions are in excellent agreement with random-matrix predictions for all cases.Comment: 4 pages, 4 figure

    Nodal domains in open microwave systems

    Full text link
    Nodal domains are studied both for real ψR\psi_R and imaginary part ψI\psi_I of the wavefunctions of an open microwave cavity and found to show the same behavior as wavefunctions in closed billiards. In addition we investigate the variation of the number of nodal domains and the signed area correlation by changing the global phase ϕg\phi_g according to ψR+iψI=eiϕg(ψR′+iψI′)\psi_R+i\psi_I=e^{i\phi_g}(\psi_R'+i\psi_I'). This variation can be qualitatively, and the correlation quantitatively explained in terms of the phase rigidity characterising the openness of the billiard.Comment: 7 pages, 10 figures, submitted to PR

    On the theory of cavities with point-like perturbations. Part II: Rectangular cavities

    Full text link
    We consider an application of a general theory for cavities with point-like perturbations for a rectangular shape. Hereby we concentrate on experimental wave patterns obtained for nearly degenerate states. The nodal lines in these patterns may be broken, which is an effect coming only from the experimental determination of the patterns. These findings are explained within a framework of the developed theory.Comment: 14 pages, 3 figure

    Correlations of electromagnetic fields in chaotic cavities

    Full text link
    We consider the fluctuations of electromagnetic fields in chaotic microwave cavities. We calculate the transversal and longitudinal correlation function based on a random wave assumption and compare the predictions with measurements on two- and three-dimensional microwave cavities.Comment: Europhys style, 8 pages, 3 figures (included

    Coherent Destruction of Photon Emission from a Single Molecule Source

    Full text link
    The behavior of a single molecule driven simultaneously by a laser and by an electric radio frequency field is investigated using a non-Hermitian Hamiltonian approach. Employing the renormalization group method for differential equations we calculate the average waiting time for the first photon emission event to occur, and determine the conditions for the suppression and enhancement of photon emission. An abrupt transition from localization-like behavior to delocalization behavior is found.Comment: 5 pages, 4 figure

    Diffractive orbits in the length spectrum of a 2D microwave cavity with a small scatterer

    Get PDF
    In a 2D rectangular microwave cavity dressed with one point-like scatterer, a semiclassical approach is used to analyze the spectrum in terms of periodic orbits and diffractive orbits. We show, both numerically and experimentally, how the latter can be accounted for in the so-called length spectrum which is retrieved from 2-point correlations of a finite range frequency spectrum. Beyond its fundamental interest, this first experimental evidence of the role played by diffractive orbits in the spectrum of an actual cavity, can be the first step towards a novel technique to detect and track small defects in wave cavities.Comment: 14 pages, format IO

    Complete S-matrix in a microwave cavity at room temperature

    Get PDF
    We experimentally study the widths of resonances in a two-dimensional microwave cavity at room temperature. By developing a model for the coupling antennas, we are able to discriminate their contribution from those of ohmic losses to the broadening of resonances. Concerning ohmic losses, we experimentally put to evidence two mechanisms: damping along propagation and absorption at the contour, the latter being responsible for variations of widths from mode to mode due to its dependence on the spatial distribution of the field at the contour. A theory, based on an S-matrix formalism, is given for these variations. It is successfully validated through measurements of several hundreds of resonances in a rectangular cavity.Comment: submitted to PR
    • …
    corecore