34 research outputs found

    Routine administration of anti-D: The ethical case for offering pregnant women fetal RHD genotyping and a review of policy and practice

    Get PDF
    BACKGROUND: Since its introduction in the 1960s Anti-D immunoglobulin (Anti-D Ig) has been highly successful in reducing the incidence of haemolytic disease of the fetus and newborn (HDFN) and achieving improvements to maternal and fetal health. It has protected women from other invasive interventions during pregnancy and prevented deaths and damage amongst newborns and is a technology which has been adopted worldwide. Currently about one third of pregnant women with the blood group Rhesus D (RhD) negative in the UK (approximately 40,000 women per year in England and Wales), receive antenatal Anti-D Ig in pregnancy when they do not require it because they are carrying a RhD negative fetus. Since 1997, a test using cell free fetal DNA (cffDNA) in maternal blood has been developed to identify the genotype of the fetus and can be used to predict the fetal RhD blood group. DISCUSSION: This paper considers whether it is ethically acceptable to continue administering antenatal Anti-D Ig to all RhD negative women when fetal RHD genotyping using maternal blood could identify those women who do not need this product. SUMMARY: The antenatal administration of Anti-D Ig to a third of RhD negative pregnant women who carry a RhD negative fetus and therefore do not need it raises important ethical issues. If fetal RHD genotyping using maternal blood was offered to all RhD negative pregnant women it would assist them to make an informed choice about whether or not to have antenatal Anti-D Ig

    CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses

    Get PDF
    It is well established that Ly6C(hi) monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6C(hi) monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6C(hi) monocytes consist of two distinct subpopulations (CXCR4(hi) and CXCR4(lo) subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4(hi) subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4(lo) monocytes. We propose that the CXCR4(hi) subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues

    Regulation for the Sake of Appearance

    No full text

    Assessment and mitigation of personal exposure to particulate air pollution in cities: An exploratory study

    No full text
    Assessment of integrated personal exposure (PE) to airborne particulate matter (PM) across diverse microenvironments (MEs) over 24 hours under different exposure scenarios is necessary to identify appropriate strategies to improve urban air quality and mitigate the health effects of PM. We carried out a collaborative study in a densely populated city-state (Singapore) to assess the integrated PE to fine particles (PM2.5), ultrafine particles (UFPs) and black carbon (BC) across diverse indoor and outdoor urban MEs, estimate related health risks and make suitable recommendations for healthy living in cities. Two volunteers with different lifestyles participated in the study by tracking their PE to particulate air pollution and the time-activity patterns over 24 hours using portable PM monitoring devices and recording their whereabouts using GPS coordinates. Home, transport and recreation (i.e., food court) MEs represented pollution hotspots of PM2.5 (21.0 ÎĽg/m3), BC (3.4 ÎĽg/m3) and UFP (33.0 Ă— 103 #/cm3), respectively. Among the different modes of transport used by the participants (walking, cycling, e-scooter, mass rapid transport (MRT), bus, car and taxi), the air pollutants had elevated concentrations while commuting by public transport (bus and MRT) as well as during active modes of transport (walking and cycling). Air-conditioned cars and taxis, equipped with air filtration systems, represented the lowest PE. The health risk assessment revealed that there are potential carcinogenic risks associated with the long-term exposure to elevated levels of PM2.5-bound toxic trace elements. These risks can be mitigated with the introduction of low-carbon and active modes of transport in place of internal combustion engines and the use of indoor air pollution exposure mitigation devices
    corecore