303 research outputs found

    From Finite to Infinite Range Order via Annealing: The Causal Architecture of Deformation Faulting in Annealed Close-Packed Crystals

    Full text link
    We analyze solid-state phase transformations that occur in zinc-sulfide crystals during annealing using a random deformation-faulting mechanism with a very simple interaction between adjacent close-packed double layers. We show that, through annealing, infinite-range structures emerge from initially short-range crystal order. That is, widely separated layers carry structurally significant information and so layer stacking cannot be completely described by any finite-range Markov process. We compare our results to two experimental diffraction spectra, finding excellent agreement.Comment: 7 pages, 6 figures; See http://www.santafe.edu/projects/CompMech/papers/iro.htm

    White matter changes measured by multi-component MR Fingerprinting in multiple sclerosis

    Get PDF
    T2-hyperintense lesions are the key imaging marker of multiple sclerosis (MS). Previous studies have shown that the white matter surrounding such lesions is often also affected by MS. Our aim was to develop a new method to visualize and quantify the extent of white matter tissue changes in MS based on relaxometry properties. We applied a fast, multi-parametric quantitative MRI approach and used a multi-component MR Fingerprinting (MC-MRF) analysis. We assessed the differences in the MRF component representing prolongedrelaxation time between patients with MS and controls and studied the relation between this component's volume and structural white matter damage identified on FLAIR MRI scans in patients with MS. A total of 48 MS patients at two different sites and 12 healthy controls were scanned with FLAIR and MRF-EPI MRI scans. MRF scans were analyzed with a joint-sparsity multi-component analysis to obtain magnetization fraction maps of different components, representing tissues such as myelin water, white matter, gray matter and cerebrospinal fluid. In the MS patients, an additional component was identified with increased transverse relaxation times compared to the white matter, likely representing changes in free water content. Patients with MS had a higher volume of the long- component in the white matter of the brain compared to healthy controls (B (95%-CI) = 0.004 (0.0006–0.008), p = 0.02). Furthermore, this MRF component had a moderate correlation (correlation coefficient R 0.47) with visible structural white matter changes on the FLAIR scans. Also, the component was found to be more extensive compared to structural white matter changes in 73% of MS patients. In conclusion, our MRF acquisition and analysis captured white matter tissue changes in MS patients compared to controls. In patients these tissue changes were more extensive compared to visually detectable white matter changes on FLAIR scans. Our method provides a novel way to quantify the extent of white matter changes in MS patients, which is underestimated using only conventional clinical MRI scans.</p

    Inflammation and prolonged QT time: Results from the Cardiovascular Disease, Living and Ageing in Halle (CARLA) study

    Get PDF
    Background: Previous research found an association of CRP with QT time in population based samples. Even more, there is evidence of a substantial involvement of the tumor necrosis factor-alpha system in the pathophysiology of cardiac arrhythmia, while the role of Interleukin 6 remains inconclusive. Objective: To determine the association between inflammation with an abnormally prolonged QT-time (APQT) in men and women of the elderly general population. Methods: Data descend from the baseline examination of the prospective, population-based Cardiovascular Disease, Living and Ageing in Halle (CARLA) Study. After exclusion of subjects with atrial fibrillation and missing ECG recording the final study cohort consisted of 919 men and 797 women. Blood parameters of inflammation were the soluble TNF-Receptor 1 (sTNF-R1), the high-sensitive C-reactive protein (hsCRP), and Interleukin 6 (IL-6). In accordance with major cardiologic societies we defined an APQT above a QT time of 460 ms in women and 450 ms in men. Effect sizes and the corresponding 95% confidence intervals (CI) were estimated by performing multiple linear and logistic regression analyses including the analysis of sex differences by interaction terms. Results: After covariate adjustment we found an odds ratio (OR) of 1.89 (95% CI: 1.13, 3.17) per 1000 pg/mL increase of sTNF-R1 in women, and 0.74 (95% CI: 0.48, 1.15) in men. In the covariate adjusted linear regression sTNF-R1 was again positively associated with QT time in women (5.75 ms per 1000 pg/mL, 95% CI: 1.32, 10.18), but not in men. Taking possible confounders into account IL-6 and hsCRP were not significantly related to APQT in both sexes. Conclusion: Our findings from cross-sectional analyses give evidence for an involvement of TNF-alpha in the pathology of APQT in women

    Predicting decoherence in discrete models

    Get PDF
    The general aim of this paper is to supply a method to decide whether a discrete system decoheres or not, and under what conditions decoherence occurs, with no need of appealing to computer simulations to obtain the time evolution of the reduced state. In particular, a lemma is presented as the core of the method.Comment: 8 pages, 2 figure

    Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds

    Full text link
    We investigate the general question of implementing a chiral MSSM like D-brane sector in Type IIB orientifold models with complete moduli stabilisation via F-terms induced by fluxes and space-time instantons, respectively gaugino condensates. The prototype examples are the KKLT and the so-called large volume compactifications. We show that the ansatz of first stabilising all moduli via F-terms and then introducing the Standard Model module is misleading, as a chiral sector notoriously influences the structure of non-perturbative effects and induces a D-term potential. Focusing for concreteness on the large volume scenario, we work out the geometry of the swiss-cheese type Calabi-Yau manifold P_[1,3,3,3,5][15]_(3,75) and analyse whether controllable and phenomenologically acceptable Kaehler moduli stabilisation can occur by the combination of F- and D-terms.Comment: 43 pages, 4 figures, v2: refs. adde

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Characterization of protons accelerated from a 3 TW table-top laser system

    Full text link
    [EN] We report on benchmark tests of a 3 TW/50 fs, table-top laser system specifically developed for proton acceleration with an intrinsic pump rate up to 100 Hz. In two series of single-shot measurements differing in pulse energy and contrast the successful operation of the diode pumped laser is demonstrated. Protons have been accelerated up to 1.6 MeV in interactions of laser pulses focused on aluminium and mylar foils between 0.8 and 25 mu m thickness. Their spectral distributions and maximum energies are consistent with former experiments under similar conditions. These results show the suitability of our system and provide a reference for studies of laser targets at high repetition rate and possible applications.This project has been funded by Centro para el Desarrollo Tecnologico Industrial (CDTI, Spain) within the INNPRONTA program, grant no. IPT-20111027, by EUROSTARS project E9113, and by the Spanish Ministry for Economy and Competitiveness within the Retos-Colaboracion 2015 initiative, ref. RTC-2015-3278-1.Bellido-MillĂĄn, PJ.; Lera, R.; Seimetz, M.; Ruiz-De La Cruz, A.; Torres PeirĂł, S.; GalĂĄn, M.; Mur, P.... (2017). Characterization of protons accelerated from a 3 TW table-top laser system. Journal of Instrumentation. 12:1-12. https://doi.org/10.1088/1748-0221/12/05/T05001S11212Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 75(5), 056401. doi:10.1088/0034-4885/75/5/056401Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Reviews of Modern Physics, 85(2), 751-793. doi:10.1103/revmodphys.85.751Ledingham, K., Bolton, P., Shikazono, N., & Ma, C.-M. (2014). Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress. Applied Sciences, 4(3), 402-443. doi:10.3390/app4030402Kraft, S. D., Richter, C., Zeil, K., Baumann, M., Beyreuther, E., Bock, S., 
 Pawelke, J. (2010). Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New Journal of Physics, 12(8), 085003. doi:10.1088/1367-2630/12/8/085003Yogo, A., Sato, K., Nishikino, M., Mori, M., Teshima, T., Numasaki, H., 
 Daido, H. (2009). Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Applied Physics Letters, 94(18), 181502. doi:10.1063/1.3126452Fritzler, S., Malka, V., Grillon, G., Rousseau, J. P., Burgy, F., Lefebvre, E., 
 Ledingham, K. W. D. (2003). Proton beams generated with high-intensity lasers: Applications to medical isotope production. Applied Physics Letters, 83(15), 3039-3041. doi:10.1063/1.1616661Kishimura, H., Morishita, H., Okano, Y. H., Okano, Y., Hironaka, Y., Kondo, K., 
 Nemoto, K. (2004). Enhanced generation of fast protons from a polymer-coated metal foil by a femtosecond intense laser field. Applied Physics Letters, 85(14), 2736-2738. doi:10.1063/1.1803915Nakamura, S., Iwashita, Y., Noda, A., Shirai, T., Tongu, H., Fukumi, A., 
 Wada, Y. (2006). Real-Time Optimization of Proton Production by Intense Short-Pulse Laser with Time-of-Flight Measurement. Japanese Journal of Applied Physics, 45(No. 34), L913-L916. doi:10.1143/jjap.45.l913Nishiuchi, M., Fukumi, A., Daido, H., Li, Z., Sagisaka, A., Ogura, K., 
 Nakamura, S. (2006). The laser proton acceleration in the strong charge separation regime. Physics Letters A, 357(4-5), 339-344. doi:10.1016/j.physleta.2006.04.053Yogo, A., Daido, H., Fukumi, A., Li, Z., Ogura, K., Sagisaka, A., 
 Itoh, A. (2007). Laser prepulse dependency of proton-energy distributions in ultraintense laser-foil interactions with an online time-of-flight technique. Physics of Plasmas, 14(4), 043104. doi:10.1063/1.2721066Robinson, A. P. L., Foster, P., Adams, D., Carroll, D. C., Dromey, B., Hawkes, S., 
 Neely, D. (2009). Spectral modification of laser-accelerated proton beams by self-generated magnetic fields. New Journal of Physics, 11(8), 083018. doi:10.1088/1367-2630/11/8/083018Nemoto, K., Maksimchuk, A., Banerjee, S., Flippo, K., Mourou, G., Umstadter, D., & Bychenkov, V. Y. (2001). Laser-triggered ion acceleration and table top isotope production. Applied Physics Letters, 78(5), 595-597. doi:10.1063/1.1343845Lee, K., Park, S. H., Cha, Y.-H., Lee, J. Y., Lee, Y. W., Yea, K.-H., & Jeong, Y. U. (2008). Generation of intense proton beams from plastic targets irradiated by an ultraintense laser pulse. Physical Review E, 78(5). doi:10.1103/physreve.78.056403Yogo, A., Daido, H., Bulanov, S. V., Nemoto, K., Oishi, Y., Nayuki, T., 
 Tajima, T. (2008). Laser ion acceleration via control of the near-critical density target. Physical Review E, 77(1). doi:10.1103/physreve.77.016401Lee, K., Lee, J. Y., Park, S. H., Cha, Y.-H., Lee, Y. W., Kim, K. N., & Jeong, Y. U. (2011). Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse. Physics of Plasmas, 18(1), 013101. doi:10.1063/1.3496058OKIHARA, S., SENTOKU, Y., SUEDA, K., SHIMIZU, S., SATO, F., MIYANAGA, N., 
 SAKABE, S. (2002). Energetic Proton Generation in a Thin Plastic Foil Irradiated by Intense Femtosecond Lasers. Journal of Nuclear Science and Technology, 39(1), 1-5. doi:10.1080/18811248.2002.9715150McKenna, P., Ledingham, K. W. D., Spencer, I., McCany, T., Singhal, R. P., Ziener, C., 
 Clark, E. L. (2002). Characterization of multiterawatt laser-solid interactions for proton acceleration. Review of Scientific Instruments, 73(12), 4176-4184. doi:10.1063/1.1516855Spencer, I., Ledingham, K. W. D., McKenna, P., McCanny, T., Singhal, R. P., Foster, P. S., 
 Davies, J. R. (2003). Experimental study of proton emission from 60-fs, 200-mJ high-repetition-rate tabletop-laser pulses interacting with solid targets. Physical Review E, 67(4). doi:10.1103/physreve.67.046402Kaluza, M., Schreiber, J., Santala, M. I. K., Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J., & Witte, K. J. (2004). Influence of the Laser Prepulse on Proton Acceleration in Thin-Foil Experiments. Physical Review Letters, 93(4). doi:10.1103/physrevlett.93.045003Ceccotti, T., LĂ©vy, A., Popescu, H., RĂ©au, F., D’Oliveira, P., Monot, P., 
 Martin, P. (2007). Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses. Physical Review Letters, 99(18). doi:10.1103/physrevlett.99.185002Neely, D., Foster, P., Robinson, A., Lindau, F., Lundh, O., Persson, A., 
 McKenna, P. (2006). Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Applied Physics Letters, 89(2), 021502. doi:10.1063/1.2220011Steinke, S., Henig, A., SchnĂŒrer, M., Sokollik, T., Nickles, P. V., Jung, D., 
 Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser and Particle Beams, 28(1), 215-221. doi:10.1017/s0263034610000157Strickland, D., & Mourou, G. (1985). Compression of amplified chirped optical pulses. Optics Communications, 56(3), 219-221. doi:10.1016/0030-4018(85)90120-8Yogo, A., Kondo, K., Mori, M., Kiriyama, H., Ogura, K., Shimomura, T., 
 Bolton, P. R. (2014). Insertable pulse cleaning module with a saturable absorber pair and a compensating amplifier for high-intensity ultrashort-pulse lasers. Optics Express, 22(2), 2060. doi:10.1364/oe.22.002060Trisorio, A., Grabielle, S., Divall, M., Forget, N., & Hauri, C. P. (2012). Self-referenced spectral interferometry for ultrashort infrared pulse characterization. Optics Letters, 37(14), 2892. doi:10.1364/ol.37.002892Seimetz, M., Bellido, P., Soriano, A., Garcia Lopez, J., Jimenez-Ramos, M. C., Fernandez, B., 
 Benlloch, J. M. (2015). Calibration and Performance Tests of Detectors for Laser-Accelerated Protons. IEEE Transactions on Nuclear Science, 62(6), 3216-3224. doi:10.1109/tns.2015.2480682NĂŒrnberg, F., Schollmeier, M., Brambrink, E., BlaĆŸević, A., Carroll, D. C., Flippo, K., 
 Roth, M. (2009). Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Review of Scientific Instruments, 80(3), 033301. doi:10.1063/1.3086424Oishi, Y., Nayuki, T., Fujii, T., Takizawa, Y., Wang, X., Yamazaki, T., 
 Andreev, A. A. (2005). Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target. Physics of Plasmas, 12(7), 073102. doi:10.1063/1.1943436Nishiuchi, M., Daito, I., Ikegami, M., Daido, H., Mori, M., Orimo, S., 
 Yoshiyuki, T. (2009). Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets. Applied Physics Letters, 94(6), 061107. doi:10.1063/1.3078291Antici, P., Fuchs, J., d’ HumiĂšres, E., Lefebvre, E., Borghesi, M., Brambrink, E., 
 PĂ©pin, H. (2007). Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets. Physics of Plasmas, 14(3), 030701. doi:10.1063/1.2480610Green, J. S., Carroll, D. C., Brenner, C., Dromey, B., Foster, P. S., Kar, S., 
 Zepf, M. (2010). Enhanced proton flux in the MeV range by defocused laser irradiation. New Journal of Physics, 12(8), 085012. doi:10.1088/1367-2630/12/8/085012Zeil, K., Kraft, S. D., Bock, S., Bussmann, M., Cowan, T. E., Kluge, T., 
 Schramm, U. (2010). The scaling of proton energies in ultrashort pulse laser plasma acceleration. New Journal of Physics, 12(4), 045015. doi:10.1088/1367-2630/12/4/045015Nishiuchi, M., Daido, H., Yogo, A., Orimo, S., Ogura, K., Ma, J., 
 Azuma, H. (2008). Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse. Physics of Plasmas, 15(5), 053104. doi:10.1063/1.2928161Macchi, A., Sgattoni, A., Sinigardi, S., Borghesi, M., & Passoni, M. (2013). Advanced strategies for ion acceleration using high-power lasers. Plasma Physics and Controlled Fusion, 55(12), 124020. doi:10.1088/0741-3335/55/12/124020Fuchs, J., Antici, P., d’ HumiĂšres, E., Lefebvre, E., Borghesi, M., Brambrink, E., 
 Audebert, P. (2005). Laser-driven proton scaling laws and new paths towards energy increase. Nature Physics, 2(1), 48-54. doi:10.1038/nphys199Schwoerer, H., Pfotenhauer, S., JĂ€ckel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., 
 Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature, 439(7075), 445-448. doi:10.1038/nature04492Margarone, D., Klimo, O., Kim, I. J., ProkĆŻpek, J., Limpouch, J., Jeong, T. M., 
 Korn, G. (2012). Laser-Driven Proton Acceleration Enhancement by Nanostructured Foils. Physical Review Letters, 109(23). doi:10.1103/physrevlett.109.234801Flippo, K. A., d’ HumiĂšres, E., Gaillard, S. A., Rassuchine, J., Gautier, D. C., Schollmeier, M., 
 Hegelich, B. M. (2008). Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets. Physics of Plasmas, 15(5), 056709. doi:10.1063/1.291812

    Trends and outcome of neoadjuvant treatment for rectal cancer: A retrospective analysis and critical assessment of a 10-year prospective national registry on behalf of the Spanish Rectal Cancer Project

    Get PDF
    Introduction: Preoperative treatment and adequate surgery increase local control in rectal cancer. However, modalities and indications for neoadjuvant treatment may be controversial. Aim of this study was to assess the trends of preoperative treatment and outcomes in patients with rectal cancer included in the Rectal Cancer Registry of the Spanish Associations of Surgeons. Method: This is a STROBE-compliant retrospective analysis of a prospective database. All patients operated on with curative intention included in the Rectal Cancer Registry were included. Analyses were performed to compare the use of neoadjuvant/adjuvant treatment in three timeframes: I)2006–2009; II)2010–2013; III)2014–2017. Survival analyses were run for 3-year survival in timeframes I-II. Results: Out of 14, 391 patients, 8871 (61.6%) received neoadjuvant treatment. Long-course chemo/radiotherapy was the most used approach (79.9%), followed by short-course radiotherapy ± chemotherapy (7.6%). The use of neoadjuvant treatment for cancer of the upper third (15-11 cm) increased over time (31.5%vs 34.5%vs 38.6%, p = 0.0018). The complete regression rate slightly increased over time (15.6% vs 16% vs 18.5%; p = 0.0093); the proportion of patients with involved circumferential resection margins (CRM) went down from 8.2% to 7.3%and 5.5% (p = 0.0004). Neoadjuvant treatment significantly decreased positive CRM in lower third tumors (OR 0.71, 0.59–0.87, Cochrane-Mantel-Haenszel P = 0.0008). Most ypN0 patients also received adjuvant therapy. In MR-defined stage III patients, preoperative treatment was associated with significantly longer local-recurrence-free survival (p < 0.0001), and cancer-specific survival (p < 0.0001). The survival benefit was smaller in upper third cancers. Conclusion: There was an increasing trend and a potential overuse of neoadjuvant treatment in cancer of the upper rectum. Most ypN0 patients received postoperative treatment. Involvement of CRM in lower third tumors was reduced after neoadjuvant treatment. Stage III and MRcN + benefited the most

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come
    • 

    corecore