88 research outputs found

    Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation

    Get PDF
    Volume: 100Start Page: 55End Page: 14

    Chimpanzees (Pan troglodytes) indicate mammalian abundance across broad spatial scales

    Get PDF
    Ongoing ecosystem change and biodiversity decline across the Afrotropics call for tools to monitor the state of biodiversity or ecosystem elements across extensive spatial and temporal scales. We assessed relationships in the co-occurrence patterns between great apes and other medium to large-bodied mammals to evaluate whether ape abundance serves as a proxy for mammal diversity across broad spatial scales. We used camera trap footage recorded at 22 research sites, each known to harbor a population of chimpanzees, and some additionally a population of gorillas, across 12 sub-Saharan African countries. From ~350,000 1-min camera trap videos recorded between 2010 and 2016, we estimated mammalian community metrics, including species richness, Shannon diversity, and mean animal mass. We then fitted Bayesian Regression Models to assess potential relationships between ape detection rates (as proxy for ape abundance) and these metrics. We included site-level protection status, human footprint, and precipitation variance as control variables. We found that relationships between detection rates of great apes and other mammal species, as well as animal mass were largely positive. In contrast, relationships between ape detection rate and mammal species richness were less clear and differed according to site protection and human impact context. We found no clear association between ape detection rate and mammal diversity. Our findings suggest that chimpanzees hold potential as indicators of specific elements of mammalian communities, especially population-level and composition-related characteristics. Declines in chimpanzee populations may indicate associated declines of sympatric medium to large-bodied mammal species and highlight the need for improved conservation interventions.Changes in chimpanzee abundance likely precede extirpation of sympatric mammals

    Complex variation in Afrotropical mammal communities with human impact

    Get PDF
    The diversity and composition of mammal communities are strongly influenced by human activities, though these relationships may vary across broad scales. Understanding this variation is key to conservation, as it provides a baseline for planning and evaluating management interventions. We assessed variation in the structure and composition of Afrotropical medium and large mammal communities within and outside protected areas, and under varying human impact. We collected data at 512 locations from 22 study sites in 12 Afrotropical countries over 7 years and 3 months (2011–2018) with 164,474 camera trap days in total. Half of these sites are located inside protected areas and half in unprotected areas. The sites are comparable in that they all harbor at least one great ape species, indicating a minimum level of habitat similarity, though they experience varying degrees of human impact. We applied Bayesian Regression models to relate site protection status and the degree of human impact to mammal communities. Protected area status was positively associated with the proportion of all threatened species, independent of the degree of human impact. Similarly, species richness was associated with area protection but was more sensitive to human impact. For all other attributes of the mammal communities, the pattern was more complex. The influence of human impact partially overrides the positive effects of protected area status, resulting in comparable mammal communities being observed both within protected areas and in similarly remote locations outside these areas. We observed a common pattern for large carnivores, whose probability of occurrence declined significantly with increasing human impact, independent of site protection status. Mammal communities benefit from sustainability measures of socio-economic context that minimize human impact. Our results support the notion that conservation of mammalian species can be achieved by reducing human impact through targeted conservation measures, adopting landscape-level management strategies, fostering community engagement, and safeguarding remote habitats with high mammal diversity

    Machine Learning to Quantitate Neutrophil NETosis

    Get PDF
    We introduce machine learning (ML) to perform classifcation and quantitation of images of nuclei from human blood neutrophils. Here we assessed the use of convolutional neural networks (CNNs) using free, open source software to accurately quantitate neutrophil NETosis, a recently discovered process involved in multiple human diseases. CNNs achieved \u3e94% in performance accuracy in diferentiating NETotic from non-NETotic cells and vastly facilitated dose-response analysis and screening of the NETotic response in neutrophils from patients. Using only features learned from nuclear morphology, CNNs can distinguish between NETosis and necrosis and between distinct NETosis signaling pathways, making them a precise tool for NETosis detection. Furthermore, by using CNNs and tools to determine object dispersion, we uncovered diferences in NETotic nuclei clustering between major NETosis pathways that is useful in understanding NETosis signaling events. Our study also shows that neutrophils from patients with sickle cell disease were unresponsive to one of two major NETosis pathways. Thus, we demonstrate the design, performance, and implementation of ML tools for rapid quantitative and qualitative cell analysis in basic science

    Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome

    Get PDF
    Prader–Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11–q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642—two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)—activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS−U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS−U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS

    Population dynamics and genetic connectivity in recent chimpanzee history

    Get PDF
    Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled

    Population dynamics and genetic connectivity in recent chimpanzee history

    Get PDF
    Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (<Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees
    corecore