109 research outputs found

    Determination of polyurethanes within microplastics in complex environmental samples by analytical pyrolysis

    Get PDF
    Polyurethanes (PUR) are a group of polymers synthesized from different diisocyanate and polyol monomers resulting in a countless number of possible structures. However, the large market demand, and the variety of application fields justify the inclusion of PUR in microplastic (MP) investigation. This study aimed at providing comprehensive information on PUR within MP analysis by pyrolysis-gas chromatography-mass spectrometry to clarify whether (i) it is possible to make a reliable statement on the PUR content of environmental samples based on a few pyrolysis products and (ii) which restrictions are required in this context. PUR were managed as subclasses defined by the diisocyanates employed for polymer synthesis. Methylene diphenyl diisocyanate (MDI)- and toluene diisocyanate (TDI)-based PUR were selected as subclasses of greatest relevance. Different PUR were pyrolyzed directly and under thermochemolytic conditions with tetramethylammonium hydroxide (TMAH). Distinct pyrolytic indicators were identified. The study supported that the use of TMAH greatly reduced the interactions of pyrolytic MP analytes with the remaining organic matrix of environmental samples and the associated negative effects on analytical results. Improvements of chromatographic behavior of PUR was evidenced. Regressions (1-20 mu g) showed good correlations and parallelism tests underlined that quantitation behavior of different MDI-PUR could be represented by the calibration of just one representative with sufficient accuracy, entailing a good estimation of the entire subclass if thermochemolysis were used. The method was exemplary applied to road dusts and spider webs sampled around a plastic processing plant to evaluate the environmental spread of PUR in an urban context. The environmental occurrence of MDI-PUR as MP was highly influenced by the proximity to a potential source, while TDI markers were not observed

    Numerical modeling of microplastic interaction with fine sediment under estuarine conditions

    Get PDF
    Microplastic (MP) pollution is an important challenge for human life which has consequently affected the natural system of other organisms. Mismanagement and also careless handling of plastics in daily life has led to an accelerating contamination of air, water and soil compartments with MP. Under estuarine conditions, interactions with suspended particulate matter (SPM) like fine sediment in the water column play an important role on the fate of MP. Further studies to better understand the corresponding transport and accumulation mechanisms are required. This paper aims at providing a new modeling approach improving the MP settling velocity formulation based on higher suspended fine sediment concentrations, as i.e. existent in estuarine turbidity zones (ETZ). The capability of the suggested approach is examined through the modeling of released MP transport in water and their interactions with fine sediment (cohesive sediment/fluid mud). The model results suggest higher concentrations of MP in ETZ, both in the water column as well as the bed sediment, which is also supported by measurements. The key process in the modeling approach is the integration of small MP particles into estuarine fine sediment aggregates. This is realized by means of a threshold sediment concentration, above which the effective MP settling velocity increasingly approaches that of the sediment aggregates. The model results are in good agreement with measured MP mass concentrations. Moreover, the model results also show that lighter small MP particles can easier escape the ETZ towards the open sea

    The role of rs2237781 within GRM8 in eating behavior

    Get PDF
    Introduction: The glutamate receptor, metabotropic 8 gene (GRM8) encodes a G-protein-coupled glutamate receptor and has been associated with smoking behavior and liability to alcoholism implying a role in addiction vulnerability. Data from animal studies suggest that GRM8 may be involved in the regulation of the neuropeptide Y and melanocortin pathways and might influence food intake and metabolism. This study aimed to investigate the effects of the genetic variant rs2237781 within GRM8 on human eating behavior. Methods: The initial analysis included 548 Sorbs from Germany who have been extensively phenotyped for metabolic traits and who completed the German version of the three-factor eating questionnaire. In addition, we analyzed two independent sample sets comprising 293 subjects from another German cohort and 430 Old Order Amish individuals. Genetic associations with restraint, disinhibition, and hunger were assessed in an additive linear regression model. Results: Among the Sorbs the major G allele of rs2237781 was significantly associated with increased restraint scores in eating behavior (P = 1.9 9 10?4; b =+1.936). The German cohort and the Old Order Amish population revealed a trend in the same direction for restraint (P = 0.242; b =+0.874; P = 0.908; b =+0.096; respectively). A meta-analysis resulted in a combined P = 3.1 9 10?3 (Z-score 2.948). Conclusion: Our data suggest that rs2237781 within GRM8 may influence human eating behavior factors probably via pathways involved in addictive behavior

    Monitoring of microplastic pollution in the Arctic: Recent developments in polymer identification, quality assurance and control (QA/QC), and data reporting

    Get PDF
    The pollution of the environment with plastics is of growing concern worldwide, including the Arctic region. While larger plastic pieces are a visible pollution issue, smaller microplastics are not visible with the naked eye. These particles are available for interaction by Arctic biota and have become a concern for animal and human health. The determination of microplastic properties includes several methodological steps, i.e. sampling, extraction, quantification and chemical identification. This review discusses suitable analytical tools for the identification, quantification and characterization of microplastics in the context of monitoring in the Arctic. It further addresses quality assurance and quality control (QA/QC) which is particularly important for the determination of microplastic in the Arctic, as both contamination and analyte losses can occur. It presents specific QA/QC measures for sampling procedures and for the handling of samples in the laboratory, either on land or on ship, and considering the small size of microplastics as well as the high risk of contamination. The review depicts which data should be mandatory to report, thereby supporting a framework for harmonized data reporting.publishedVersio

    Hitchhiking into the Deep: How Microplastic Particles are Exported through the Biological Carbon Pump in the North Atlantic Ocean

    Get PDF
    Understanding residence times of plastic in the ocean is a major knowledge gap in plastic pollution studies. Observations report a large mismatch between plastic load estimates from worldwide production and disposal and actual plastics floating at the sea surface. Surveys of the water column, from the surface to the deep sea, are rare. Most recent work, therefore, addressed the “missing plastic” question using modeling or laboratory approaches proposing biofouling and degradation as the main removal processes in the ocean. Through organic matrices, plastic can affect the biogeochemical and microbial cycling of carbon and nutrients. For the first time, we provide in situ measured vertical fluxes of microplastics deploying drifting sediment traps in the North Atlantic Gyre from 50 m down to 600 m depth, showing that through biogenic polymers plastic can be embedded into rapidly sinking particles also known as marine snow. We furthermore show that the carbon contained in plastic can represent up to 3.8% of the total downward flux of particulate organic carbon. Our results shed light on important pathways regulating the transport of microplastics in marine systems and on potential interactions with the marine carbon cycle, suggesting microplastic removal through the “biological plastic pump”

    Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics

    Get PDF
    Microplastics are of major concerns for society and is currently in the focus of legislators and administrations. A small number of measures to reduce or remove primary sources of microplastics to the environment are currently coming into effect. At the moment, they have not yet tackled important topics such as food safety. However, recent developments such as the 2018 bill in California are requesting the analysis of microplastics in drinking water by standardized operational protocols. Administrations and analytical labs are facing an emerging field of methods for sampling, extraction, and analysis of microplastics, which complicate the establishment of standardized operational protocols. In this review, the state of the currently applied identification and quantification tools for microplastics are evaluated providing a harmonized guideline for future standardized operational protocols to cover these types of bills. The main focus is on the naked eye detection, general optical microscopy, the application of dye staining, flow cytometry, Fourier transform infrared spectroscopy (FT-Ir) and microscopy, Raman spectroscopy and microscopy, thermal degradation by pyrolysis–gas chromatography–mass spectrometry (py-GC-MS) as well as thermo-extraction and desorption gas chromatography–mass spectrometry (TED-GC-MS). Additional techniques are highlighted as well as the combined application of the analytical techniques suggested. An outlook is given on the emerging aspect of nanoplastic analysis. In all cases, the methods were screened for limitations, field work abilities and, if possible, estimated costs and summarized into a recommendation for a workflow covering the demands of society, legislation, and administration in cost efficient but still detailed manner

    Setting priorities for land management to mitigate climate change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production.</p> <p>Results</p> <p>In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option.</p> <p>Conclusions</p> <p>When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification.</p

    Impacts of micro- and nanoplastics on early-life health: a roadmap towards risk assessment

    Get PDF
    Micro- and nanoplastics (MNPs) are ubiquitous environmental pollutants representing a concern for human health. MNPs have been detected in human placentas, indicating that during pregnancy maternal exposure may lead to placental transfer and foetal exposure, with potential for adverse effects on early-life development. However, a comprehensive risk assessment (RA) framework, specific to early-life is lacking. Here, we propose a novel roadmap to assist the development of an early-life health RA of MNPs. This roadmap is designed based on established chemical, mixture, particle, and MNP assessment strategies aligned with standard RA components (problem formulation, hazard identification, hazard characterisation, exposure assessment, risk characterisation). We systematically work through these stages to identify what is needed to progress a RA for the early-life impacts of MNPs, including what information is missing, and what may be used in the interim. While challenges such as complex physicochemical properties of MNPs, limited toxicity data at relevant exposure levels, and uncertainties related to characterising complex exposures have been described elsewhere, our work discusses how these challenges specifically impact early-life stages such as the significance of MNP presence in biological samples and factors influencing bioaccumulation and placental transfer. Additionally, we introduce the development of new technology readiness levels for methods used in the detection of MNPs in complex matrices. Importantly, this review integrates a broad scope of relevant information into one comprehensive document, providing a unified resource. We highlight specific requirements and areas for targeted research, including the development of dose-response relationships specific to early-life stages and novel strategies for assessing bioaccumulation and placental transfer of MNPs. By addressing these gaps, our roadmap aims to advance the development of a robust framework, ultimately enhancing the understanding and mitigation of risks associated with early-life exposure to MNPs

    Sampling, isolating and identifying microplastics ingested by fish and invertebrates

    Get PDF
    Microplastic debris (<5 mm) is a prolific environmental pollutant, found worldwide in marine, freshwater and terrestrial ecosystems. Interactions between biota and microplastics are prevalent, and there is growing evidence that microplastics can incite significant health effects in exposed organisms. To date, the methods used to quantify such interactions have varied greatly between studies. Here, we critically review methods for sampling, isolating and identifying microplastics ingested by environmentally and laboratory exposed fish and invertebrates. We aim to draw attention to the strengths and weaknesses of the suite of published microplastic extraction and enumeration techniques. Firstly, we highlight the risk of microplastic losses and accumulation during biotic sampling and storage, and suggest protocols for mitigating contamination in the field and laboratory. We evaluate a suite of methods for extracting microplastics ingested by biota, including dissection, depuration, digestion and density separation. Lastly, we consider the applicability of visual identification and chemical analyses in categorising microplastics. We discuss the urgent need for the standardisation of protocols to promote consistency in data collection and analysis. Harmonized methods will allow for more accurate assessment of the impacts and risks microplastics pose to biota and increase comparability between studies

    A Spatial Issue Tracking System Boosting the Development of Track-Based Testing Environments

    No full text
    In the transportation domain the relevance of test tracks and proving grounds for development and implementation of simulation and testing systems is continually increasing. Test tracks and their surroundings either represent imaginary settings or are based on real-world spatial data and often serve as a base for dedicated simulation scenarios. The manual or automated authoring of such environments is an iterative and time-consuming process undergoing frequent reviews by participants often distributed throughout a project. From our experience with fusion of heterogeneous spatial data sources into an overall 3D virtual environment as well as operating test sites we can tell that track-data-related issues arising during these reviews are difficult to grasp, to track and to communicate to the corresponding instances for solving. To simplify management and handling of such geodata-related issues the DLR-Institute of Transportation Systems (DLR-TS) is developing a map-based spatial issue tracking system. In software engineering general issue tracker and especially bug tracking systems such as JIRA, MantisBT, Redmine or Trac are well-established tools supporting the software development process. We are combining this widely used base technology with flexible map layers, which implement visual representations of project-specific spatial data. Atlassian JIRA is already used by DLR-TS as issue tracking system for various projects and has been extended to implement custom spatial properties of issues. The map display is based on OpenLayers and harvests all spatial issues related to a certain project, which are directly linked to the underlying JIRA. It also offers the possibility to create new issues by clicking in the map. Interaction between both components is realised through the REST API of the underlying issue tracking system and could in theory be adapted to various systems. Of course, the map context has to be related to the project data such as to a certain test track. As OpenLayers supports OGC's Open Web Services (OWS) we can use common open GIS technologies to serve individual map data layer. GeoServer, for example, can host map data consumable as Web Map Services (WMS). Anyway, conversion of project-specific, heterogeneous geo-databases into a standardised format understandable by GeoServer is still a manual workflow. As the majority of transportation projects probably relies on spatial data such a spatial issue tracking system can be extended to not only focus on test tracks for simulation purposes but to annotate arbitrary geodata in general. Practical application areas could be the management of road infrastructure or cadastral data. In future we want to implement interactive, map-based issue modification as well as annotation in 3D environment models. We follow a modular approach and try to rely on open and already established software components. This offers flexibility regarding the choice of the underlying issue tracker, the visual presentation layer and the map data publishing backend. The authoring of map layers is still a manual task due to necessary format conversions but may be improved to automated deployment through GeoServer's REST API in future
    corecore