78 research outputs found

    Instrumental Variable Estimation of the Causal Effect of Hunger Early in Life on Health Later in Life

    Get PDF
    Numerous studies have evaluated the effect of nutrition early in life on health much later in life by comparing individuals born during a famine to others. Nutritional intake is typically unobserved and endogenous, whereas famines arguably provide exogenous variation in the provision of nutrition. However, living through a famine early in life does not necessarily imply a lack of nutrition during that age interval, and vice versa, and in this sense the observed difference at most provides a qualitative assessment of the average causal effect of a nutritional shortage, which is the parameter of interest. In this paper we estimate this average causal effect on health outcomes later in life, by applying instrumental variable estimation, using data with self-reported periods of hunger earlier in life, with famines as instruments. The data contain samples from European countries and include birth cohorts exposed to various famines in the 20th century. We use two-sample IV estimation to deal with imperfect recollection of conditions at very early stages of life. The estimated average causal effects often exceed famine effects by a factor three.2SLS, obesity, high blood pressure, height, developmental origins, ageing, famine, nutrition, two-sample IV

    Empirical essays on the effects of early life conditions on health later in life

    Full text link
    This dissertation analyses a topic that is nowadays widely studied in economics and other social sciences, but originated from the medical literature: The long-run health effects of early life conditions. Chapter 2 starts out by using business cycle fluctuations around the time of birth of individuals as exogenous variation in early life conditions. Specifically, it asks the question how such shocks influence the quantitative impact of later life events such as bereavement or the onset of diseases on the trajectory of cognitive and mental health outcomes. The third chapter is concerned with the later life health effects of experiencing a famine in utero or shortly after birth. We use a unique combination of data on the German context of World War II and its aftermath -- specifically on air raids on German cities during the war and food rations distributed during and after the war -- to measure two reduced form effects: the effects of air raid attacks and the effects of famine early in life on various health outcomes. Under our theoretical considerations, we can use the results of this exercise to disentangle the effect components inherent in famine effects (in our case stress and malnutrition). Chapter 4 tackles a shortcoming of famine studies and starts out by noting that a reduced form famine effect is in general not a quantitatively relevant measure of how a severe lack of nutrition in infancy or childhood affects later life health. We use individual reports of hunger episodes in childhood and instrumental variables techniques to estimate the causal effect of hunger and compare this estimate to the commonly estimated reduced form famine effect

    Instrumental Variable Estimation of the Causal Effect of Hunger Early in Life on Health Later in Life

    Get PDF
    Numerous studies have evaluated the effect of nutrition early in life on health much later in life by comparing individuals born during a famine to others. Nutritional intake is typically unobserved and endogenous, whereas famines arguably provide exogenous variation in the provision of nutrition. However, living through a famine early in life does not necessarily imply a lack of nutrition during that age interval, and vice versa, and in this sense the observed difference at most provides a qualitative assessment of the average causal effect of a nutritional shortage, which is the parameter of interest. In this paper we estimate this average causal effect on health outcomes later in life, by applying instrumental variable estimation, using data with self-reported periods of hunger earlier in life, with famines as instruments. The data contain samples from European countries and include birth cohorts exposed to various famines in the 20th century. We use two-sample IV estimation to deal with imperfect recollection of conditions at very early stages of life. The estimated average causal effects often exceed famine effects by a factor three

    Holographic imaging of an array of submicron light scatterers at low photon numbers

    Full text link
    We experimentally test a recently proposed holographic method for imaging coherent light scatterers which are distributed over a 2-dimensional grid. In our setup the scatterers consist of a back-illuminated, opaque mask with submicron-sized holes. We study how the imaging fidelity depends on various parameters of the set-up. We observe that a few hundred scattered photons per hole already suffice to obtain a fidelity of 96% to correctly determine whether a hole is located at a given grid point. The holographic method demonstrated here has a high potential for applications with ultracold atoms in optical lattices.Comment: 8 pages, 9 figure

    A presynaptic phosphosignaling hub for lasting homeostatic plasticity

    Get PDF
    Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks

    Finding needles in haystacks:Linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Ευρετικές προσεγγίσεις του μοναδιάστατου προβλήματος πακετοποίησης

    Get PDF
    Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    MMB & DFT 2014 : Proceedings of the International Workshops ; Modeling, Analysis and Management of Social Networks and their Applications (SOCNET 2014) & Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems (FGENET 2014)

    Get PDF
    At present, a comprehensive set of measurement, modeling, analysis, simulation, and performance evaluation techniques are employed to investigate complex networks. A direct transfer of the developed engineering methodologies to related analysis and design tasks in next-generation energy networks, energy-efficient systems and social networks is enabled by a common mathematical foundation. The International Workshop on "Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems" (FGENET 2014) and the International Workshop on "Modeling, Analysis and Management of Social Networks and their Applications" (SOCNET 2014) were held on March 19, 2014, at University of Bamberg in Germany as satellite symposia of the 17th International GI/ITG Conference on "Measurement, Modelling and Evaluation of Computing Systems" and "Dependability and Fault-Tolerance" (MMB & DFT 2014). They dealt with current research issues in next-generation energy networks, smart grid communication architectures, energy-efficient systems, social networks and social media. The Proceedings of MMB & DFT 2014 International Workshops summarizes the contributions of 3 invited talks and 13 reviewed papers and intends to stimulate the readers’ future research in these vital areas of modern information societies.Gegenwärtig wird eine reichhaltige Klasse von Verfahren zur Messung, Modellierung, Analyse, Simulation und Leistungsbewertung komplexer Netze eingesetzt. Die unmittelbare Übertragung entwickelter Ingenieurmethoden auf verwandte Analyse- und Entwurfsaufgaben in Energienetzen der nächsten Generation, energieeffizienten Systemen und sozialen Netzwerken wird durch eine gemeinsame mathematische Basis ermöglicht. Die Internationalen Workshops "Demand Modeling and Quantitative Analysis of Future Generation Energy Net-works and Energy-Efficient Systems" (FGENET 2014) und "Modeling, Analysis and Management of Social Networks and their Applications" (SOCNET 2014) wurden am 19. März 2014 als angegliederte Symposien der 17. Internationalen GI/ITG Konferenz "Measurement, Modelling and Evaluation of Computing Systems" und "Dependability and Fault-Tolerance" (MMB & DFT 2014) an der Otto-Friedrich-Universität Bamberg in Deutschland veranstaltet. Es wurden aktuelle Forschungsfragen in Energienetzen der nächsten Generation, Smart Grid Kommunikationsarchitekturen, energieeffizienten Systemen, sozialen Netzwerken und sozialen Medien diskutiert. Der Tagungsband der Internationalen Workshops MMB & DFT 2014 fasst die Inhalte von 3 eingeladenen Vorträgen und 13 begutachteten Beiträgen zusammen und beabsichtigt, den Lesern Anregungen für ihre eigenen Forschungen auf diesen lebenswichtigen Gebieten moderner Informationsgesellschaften zu vermitteln

    Finding needles in haystacks : linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201
    corecore