133 research outputs found
A taxonomy of fatigue concepts and their relation to hearing loss
Fatigue is common in individuals with a variety of chronic health conditions and can have significant negative effects on quality of life. Although limited in scope, recent work suggests persons with hearing loss may be at increased risk for fatigue, in part due to effortful listening that is exacerbated by their hearing impairment. However, the mechanisms responsible for hearing loss-related fatigue, and the efficacy of audiologic interventions for reducing fatigue, remain unclear. To improve our understanding of hearing loss-related fatigue, as a field it is important to develop a common conceptual understanding of this construct. In this article, the broader fatigue literature is reviewed to identify and describe core constructs, consequences, and methods for assessing fatigue and related constructs. Finally, the current knowledge linking hearing loss and fatigue is described and may be summarized as follows: Hearing impairment may increase the risk of subjective fatigue and vigor deficits; adults with hearing loss require more time to recover from fatigue after work and have more work absences; sustained, effortful, listening can be fatiguing; optimal methods for eliciting and measuring fatigue in persons with hearing loss remain unclear and may vary with listening condition; and amplification may minimize decrements in cognitive processing speed during sustained effortful listening. Future research is needed to develop reliable measurement methods to quantify hearing loss-related fatigue, explore factors responsible for modulating fatigue in people with hearing loss, and identify and evaluate potential interventions for reducing hearing loss-related fatigue
Bone turnover markers in sheep and goat: a review of the scientific literature
Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.José Arthur de A. Camassa acknowledges to the
Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq), Brazil, for his PhD
scholarship 202248/2015-1.info:eu-repo/semantics/publishedVersio
Cortisol Awakening Response and Nighttime Salivary Cortisol Levels in Healthy Working Korean Subjects
∙ The authors have no financial conflicts of interest. Purpose: Cortisol awakening response (CAR) and nighttime cortisol levels have been used as indices of adrenocortical activity. However, population-based statistical information regarding these indices has not been provided in healthy subjects. This study was carried out to provide basic statistical information regarding these indices. Materials and Methods: Cortisol levels were measured in saliva samples collected immediately upon awakening (0 min), 30 min after awakening and in the nighttime on two consecutive days in 133 healthy subjects. Results: We determined the mean [standard deviation (SD)], median (interquartile range) and 5th-95th percentile range for each measure and auxiliary indices for CAR, i.e., the secreted cortisol concentration within 30 min of awakening (CARscc) and absolute and relative increases in cortisol level within 30 min of awakening (CARi and CARi%, respectively). We also determined these values for auxiliary indices derived from nighttime cortisol level, i.e., the ratio of cortisol level 30 min afte
Stress, the cortisol awakening response and cognitive function
There is evidence that stress-induced disruption of the circadian rhythm of cortisol secretion, has negative consequences for brain health. The cortisol awakening response (CAR) is the most prominent and dynamic aspect of this rhythm. It has complex regulatory mechanisms making it distinct from the rest of the cortisol circadian rhythm, and is frequently investigated as a biomarker of stress and potential intermediary between stress and impaired brain function. Despite this, the precise function of the CAR within the healthy cortisol circadian rhythm remains poorly understood. Cortisol is a powerful hormone known to influence cognition in multiple and complex ways. Studies of the CAR and cognitive function have used varied methodological approaches which have produced similarly varied findings. The present review considers the accumulating evidence linking stress, attenuation of the CAR and reduced cognitive function, and seeks to contextualize the many findings to study populations, cognitive measures, and CAR methodologies employed. Associations between the CAR and both memory and executive functions are discussed in relation to its potential role as a neuroendocrine time of day signal that synchronizes peripheral clocks throughout the brain to enable optimum function, and recommendations for future research are provided
A soy-based phosphatidylserine/ phosphatidic acid complex (PAS) normalizes the stress reactivity of hypothalamus-pituitary-adrenal-axis in chronically stressed male subjects: a randomized, placebo-controlled study
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
- …
