1,118 research outputs found
Numerical Portrait of a Relativistic BCS Gapped Superfluid
We present results of numerical simulations of the 3+1 dimensional Nambu -
Jona-Lasinio (NJL) model with a non-zero baryon density enforced via the
introduction of a chemical potential mu not equal to 0. The triviality of the
model with a number of dimensions d>=4 is dealt with by fitting low energy
constants, calculated analytically in the large number of colors (Hartree)
limit, to phenomenological values. Non-perturbative measurements of local order
parameters for superfluidity and their related susceptibilities show that, in
contrast to the 2+1 dimensional model, the ground-state at high chemical
potential and low temperature is that of a traditional BCS superfluid. This
conclusion is supported by the direct observation of a gap in the dispersion
relation for 0.5<=(mu a)<=0.85, which at (mu a)=0.8 is found to be roughly 15%
the size of the vacuum fermion mass. We also present results of an initial
investigation of the stability of the BCS phase against thermal fluctuations.
Finally, we discuss the effect of splitting the Fermi surfaces of the pairing
partners by the introduction of a non-zero isospin chemical potential.Comment: 41 pages, 19 figures, uses axodraw.sty, v2: minor typographical
correction
Identification of S100A8-correlated genes for prediction of disease progression in non-muscle invasive bladder cancer
<p>Abstract</p> <p>Background</p> <p><it>S100 calcium binding protein A8 </it>(<it>S100A8</it>) has been implicated as a prognostic indicator in several types of cancer. However, previous studies are limited in their ability to predict the clinical behavior of the cancer. Here, we sought to identify a molecular signature based on <it>S100A8 </it>expression and to assess its usefulness as a prognostic indicator of disease progression in non-muscle invasive bladder cancer (NMIBC).</p> <p>Methods</p> <p>We used 103 primary NMIBC specimens for microarray gene expression profiling. The median follow-up period for all patients was 57.6 months (range: 3.2 to 137.0 months). Various statistical methods, including the leave-one-out cross validation method, were applied to identify a gene expression signature able to predict the likelihood of progression. The prognostic value of the gene expression signature was validated in an independent cohort (n = 302).</p> <p>Results</p> <p>Kaplan-Meier estimates revealed significant differences in disease progression associated with the expression signature of <it>S100A8</it>-correlated genes (log-rank test, <it>P </it>< 0.001). Multivariate Cox regression analysis revealed that the expression signature of <it>S100A8</it>-correlated genes was a strong predictor of disease progression (hazard ratio = 15.225, 95% confidence interval = 1.746 to 133.52, <it>P </it>= 0.014). We validated our results in an independent cohort and confirmed that this signature produced consistent prediction patterns. Finally, gene network analyses of the signature revealed that <it>S100A8</it>, <it>IL1B</it>, and <it>S100A9 </it>could be important mediators of the progression of NMIBC.</p> <p>Conclusions</p> <p>The prognostic molecular signature defined by <it>S100A8</it>-correlated genes represents a promising diagnostic tool for the identification of NMIBC patients that have a high risk of progression to muscle invasive bladder cancer.</p
Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease
Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting
Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder.
Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models, such as reduced glial cell number in the prefrontal cortex of patients, upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca2+ imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment
Intensity Modulated Radiotherapy (IMRT) and Fractionated Stereotactic Radiotherapy (FSRT) for children with head-and-neck-rhabdomyosarcoma
<p>Abstract</p> <p>Background</p> <p>The present study evaluates the outcome of 19 children with rhabdomyosarcoma of the head-and-neck region treated with Intensity Modulated Radiotherapy (IMRT) or Fractionated Stereotactic Radiotherapy (FSRT) between August 1995 and November 2005.</p> <p>Methods</p> <p>We treated 19 children with head-and-neck rhabdomyosarcoma with FSRT (n = 14) or IMRT (n = 5) as a part of multimodal therapy. Median age at the time of radiation therapy was 5 years (range 2â15 years). All children received systemic chemotherapy according to the German Soft Tissue Sarcoma Study protocols.</p> <p>Median size of treatment volume for RT was 93,4 ml. We applied a median total dose of 45 Gy (range 32 Gy â 54 Gy) using a median fractionation of 5 Ă 1,8 Gy/week (range 1,6 Gy â 1,8 Gy).</p> <p>The median time interval between primary diagnosis and radiation therapy was 5 months (range 3â9 months).</p> <p>Results</p> <p>After RT, the 3- and 5-year survival rate was 94%. The 3- and 5-year actuarial local control rate after RT was 89%.</p> <p>The actuarial freedom of distant metastases rate at 3- and 5-years was 89% for all patients.</p> <p>Radiotherapy was well tolerated in all children and could be completed without interruptions > 4 days. No toxicities >CTC grade 2 were observed. The median follow-up time after RT was 17 months.</p> <p>Conclusion</p> <p>IMRT and FSRT lead to excellent outcome in children with head-and-neck RMS with a low incidence of treatment-related side effects.</p
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Evidence for increases in vegetation species richness across UK Environmental Change Network sites linked to changes in air pollution and weather patterns
We analysed trends in vegetation monitored at regular intervals over the past two decades (1993â2012)at the twelve terrestrial Environmental Change Network (ECN) sites. We sought to determine the extent to which flora had changed and link any such changes to potential environmental drivers. We observed significant increases in species richness, both at a whole network level, and when data were analysed within Broad Habitat groupings representing the open uplands, open lowlands and woodlands. We also found comparable increases in an indicator of vegetation response to soil pH, Ellenberg R. Species characteristic of less acid soils tended to show more consistent increases in frequency across sites relative to species with a known tolerance for strongly acidic soils. These changes are, therefore, broadly consistent with a response to increases in soil solution pH observed for the majority of ECN sites that, in turn, are likely to be driven by large reductions in acid deposition in recent decades. Increases in species richness in certain habitat groupings could also be linked to increased soil moisture availability in drier lowland sites that are likely to have been influenced by a trend towards wetter summers in recent years, and possibly also to a reduction in soil nitrogen availability in some upland locations. Changes in site management are also likely to have influenced trends at certain sites, particularly with respect to agricultural practices. Our results are therefore indicative of wide-scale responses to major regional-scale changes in air pollution and recent weather patterns, modified by local management effects. The relative consistency of management of ECN sites over time is atypical of much of the wider countryside and it is therefore not appropriate to scale up these observations to infer national scale trends. Nevertheless the results provide an important insight into processes that may be operating nationally. It will now be necessary to test for the ubiquity of these changes using appropriate broader spatial scale survey data
- âŠ