347 research outputs found

    Virtual Noncontrast Abdominal Imaging with Photon-counting Detector CT.

    Get PDF
    Background Accurate CT attenuation and diagnostic quality of virtual noncontrast (VNC) images acquired with photon-counting detector (PCD) CT are needed to replace true noncontrast (TNC) scans. Purpose To assess the attenuation errors and image quality of VNC images from abdominal PCD CT compared with TNC images. Materials and Methods In this retrospective study, consecutive adult patients who underwent a triphasic examination with PCD CT from July 2021 to October 2021 were included. VNC images were reconstructed from arterial and portal venous phase CT. The absolute attenuation error of VNC compared with TNC images was measured in multiple structures by two readers. Then, two readers blinded to image reconstruction assessed the overall image quality, image noise, noise texture, and delineation of small structures using five-point discrete visual scales (5 = excellent, 1 = nondiagnostic). Overall image quality greater than or equal to 3 was deemed diagnostic. In a phantom, noise texture, spatial resolution, and detectability index were assessed. A detectability index greater than or equal to 5 indicated high diagnostic accuracy. Interreader agreement was evaluated using the Krippendorff α coefficient. The paired t test and Friedman test were applied to compare objective and subjective results. Results Overall, 100 patients (mean age, 72 years ± 10 [SD]; 81 men) were included. In patients, VNC image attenuation values were consistent between readers (α = .60), with errors less than 5 HU in 76% and less than 10 HU in 95% of measurements. There was no evidence of a difference in error of VNC images from arterial or portal venous phase CT (3.3 HU vs 3.5 HU, P = .16). Subjective image quality was rated lower in VNC images for all categories (all, P < .001). Diagnostic quality of VNC images was reached in 99% and 100% of patients for readers 1 and 2, respectively. In the phantom, VNC images exhibited 33% higher noise, blotchier noise texture, similar spatial resolution, and inferior but overall good image quality (detectability index >20) compared with TNC images. Conclusion Abdominal virtual noncontrast images from the arterial and portal venous phase of photon-counting detector CT yielded accurate CT attenuation and good image quality compared with true noncontrast images. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Sosna in this issue

    Diagnostic performance of CT with Valsalva maneuver for the diagnosis and characterization of inguinal hernias

    Full text link
    PURPOSE Inguinal hernias are mainly diagnosed clinically, but imaging can aid in equivocal cases or for treatment planning. The purpose of this study was to evaluate the diagnostic performance of CT with Valsalva maneuver for the diagnosis and characterization of inguinal hernias. METHODS This single-center retrospective study reviewed all consecutive Valsalva-CT studies between 2018 and 2019. A composite clinical reference standard including surgery was used. Three blinded, independent readers (readers 1-3) reviewed the CT images and scored the presence and type of inguinal hernia. A fourth reader measured hernia size. Interreader agreement was quantified with Krippendorff's α coefficients. Sensitivity, specificity, and accuracy of Valsalva-CT for the detection of inguinal hernias was computed for each reader. RESULTS The final study population included 351 patients (99 women) with median age 52.2 years (interquartile range (IQR), 47.2, 68.9). A total of 381 inguinal hernias were present in 221 patients. Sensitivity, specificity, and accuracy were 85.8%, 98.1%, and 91.5% for reader 1, 72.7%, 92.5%, and 81.8% for reader 2, and 68.2%, 96.3%, and 81.1% for reader 3. Hernia neck size was significantly larger in cases correctly detected by all three readers (19.0 mm, IQR 13, 25), compared to those missed by all readers (7.0 mm, IQR, 5, 9; p < 0.001). Interreader agreement was substantial (α = 0.723) for the diagnosis of hernia and moderate (α = 0.522) for the type of hernia. CONCLUSION Valsalva-CT shows very high specificity and high accuracy for the diagnosis of inguinal hernia. Sensitivity is only moderate which is associated with missed smaller hernias

    Observations of T-Tauri Stars using HST-GHRS: I. Far Ultraviolet Emission Lines

    Get PDF
    We have analyzed GHRS data of eight CTTS and one WTTS. The GHRS data consists of spectral ranges 40 A wide centered on 1345, 1400, 1497, 1550, and 1900 A. These UV spectra show strong SiIV, and CIV emission, and large quantities of sharp (~40 km/s) H2 lines. All the H2 lines belong to the Lyman band and all the observed lines are single peaked and optically thin. The averages of all the H2 lines centroids for each star are negative which may indicate that they come from an outflow. We interpret the emission in H2 as being due to fluorescence, mostly by Ly_alpha, and identify seven excitation routes within 4 A of that line. We obtain column densities (10^12 to 10^15 cm^-2) and optical depths (~1 or less) for each exciting transition. We conclude that the populations are far from being in thermal equilibrium. We do not observe any lines excited from the far blue wing of Ly_alpha, which implies that the molecular features are excited by an absorbed profile. SiIV and CIV (corrected for H2 emission) have widths of ~200 km/s, and an array of centroids (blueshifted lines, centered, redshifted). These characteristics are difficult to understand in the context of current models of the accretion shock. For DR Tau we observe transient strong blueshifted emission, perhaps the a result of reconnection events in the magnetosphere. We also see evidence of multiple emission regions for the hot lines. While CIV is optically thin in most stars in our sample, SiIV is not. However, CIV is a good predictor of SiIV and H2 emission. We conclude that most of the flux in the hot lines may be due to accretion processes, but the line profiles can have multiple and variable components.Comment: 67 pages, 19 figures, Accepted in Ap

    Observational Constraints on the Formation and Evolution of Binary Stars

    Get PDF
    We present a high spatial resolution UV to NIR survey of 44 young binary stars in Taurus with separations of 10-1000 AU. The primary results include: (1) The relative ages of binary star components are more similar than the relative ages of randomly paired single stars, supporting coeval formation. (2) Only one of the companion masses is substellar, and hence the apparent overabundance of T Tauri star companions relative to main-sequence star companions can not be explained by a wealth of substellar secondaries that would have been missed in main-sequence surveys. (3) Roughly 10% of T Tauri binary star components have very red NIR colors (K-L > 1.4) and unusually high mass accretion rates. This phenomenon does not appear to be restricted to binary systems, however, since a comparable fraction of single T Tauri stars exhibit the same properties. (4) Although the disk lifetimes of single stars are roughly equal to their stellar ages, the disk lifetimes of binary stars are an order of magnitude less than their ages. (5) The accretion rates for both single and binary T Tauri stars appear to be moderately mass dependent. (6) Although most classical T Tauri star binaries retain both a circumprimary and a circumsecondary disk, there are several systems with only a circumprimary disk. Together with the relative accretion rates, this suggests that circumprimary disks survive longer, on average, than circumsecondary disks. (7) The disk lifetimes, mass ratios, and relative accretion signatures of the closest binaries (10-100 AU) suggest that they are being replenished from a circumbinary reservoir with low angular momentum. Overall, these results support fragmentation as the dominant binary star formation mechanism.Comment: 67 pages including 11 figures, LaTeX2e, accepted for publication in Ap

    Solid confirmation of the broad DIB around 864.8 nm using stacked Gaia–RVS spectra

    Get PDF
    Context. Studies of the correlation between different diffuse interstellar bands (DIBs) are important for exploring their origins. However, the Gaia–RVS spectral window between 846 and 870 nm contains few DIBs, the strong DIB at 862 nm being the only convincingly confirmed one. / Aims. Here we attempt to confirm the existence of a broad DIB around 864.8 nm and estimate its characteristics using the stacked Gaia–RVS spectra of a large number of stars. We study the correlations between the two DIBs at 862 nm (λ862) and 864.8 nm (λ864.8), as well as the interstellar extinction. / Methods. We obtained spectra of the interstellar medium (ISM) absorption by subtracting the stellar components using templates constructed from real spectra at high Galactic latitudes with low extinctions. We then stacked the ISM spectra in Galactic coordinates (ℓ,  b) – pixelized by the HEALPix scheme – to measure the DIBs. The stacked spectrum is modeled by the profiles of the two DIBs, Gaussian for λ862 and Lorentzian for λ864.8, and a linear continuum. We report the fitted central depth (CD), central wavelength, equivalent width (EW), and their uncertainties for the two DIBs. / Results. We obtain 8458 stacked spectra in total, of which 1103 (13%) have reliable fitting results after applying numerous conservative filters. This work is the first of its kind to fit and measure λ862 and λ864.8 simultaneously in cool-star spectra. Based on these measurements, we find that the EWs and CDs of λ862 and λ864.8 are well correlated with each other, with Pearson coefficients (rp) of 0.78 and 0.87, respectively. The full width at half maximum (FWHM) of λ864.8 is estimated as 1.62 ± 0.33 nm which compares to 0.55 ± 0.06 nm for λ862. We also measure the vacuum rest-frame wavelength of λ864.8 to be λ0 = 864.53 ± 0.14 nm, smaller than previous estimates. / Conclusions. We find solid confirmation of the existence of the DIB around 864.8 nm based on an exploration of its correlation with λ862 and estimation of its FWHM. The DIB λ864.8 is very broad and shallow. That at λ862 correlates better with E(BP − RP) than λ864.8. The profiles of the two DIBs could strongly overlap with each other, which contributes to the skew of the λ862 profile

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Report drawn up on behalf of the Committee on Economic and Monetary Affairs on the proposal from the Commission of the European Communities to the Council (Doc. 1-99/83-COM(83) 85 final) for a Council Decision implementing the decision empowering the Commission to borrow under the New Community Instrument for the purpose of promoting investment within the Community, Working Documents 1983-1984, Document 1-236/83, 3 May 1983

    Get PDF
    The 4MOST([1]) instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x10(6) spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z similar to 5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of similar to 1600 targets at R similar to 5,000 from 390-900nm and similar to 800 targets at R>18,000 in three channels between similar to 395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of similar to 4.1 degrees2. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: opto-mechanical, control, data management and operations concepts; and initial performance estimates

    Gaia Early Data Release 3. The Galactic anticentre

    Get PDF
    Aims: We aim to demonstrate the scientific potential of the Gaia Early Data Release 3 (EDR3) for the study of different aspects of the Milky Way structure and evolution and we provide, at the same time, a description of several practical aspects of the data and examples of their usage. Methods: We used astrometric positions, proper motions, parallaxes, and photometry from EDR3 to select different populations and components and to calculate the distances and velocities in the direction of the anticentre. In this direction, the Gaia astrometric data alone enable the calculation of the vertical and azimuthal velocities; also, the extinction is relatively low compared to other directions in the Galactic plane. We then explore the disturbances of the current disc, the spatial and kinematical distributions of early accreted versus in situ stars, the structures in the outer parts of the disc, and the orbits of open clusters Berkeley 29 and Saurer 1. Results: With the improved astrometry and photometry of EDR3, we find that: (i) the dynamics of the Galactic disc are very complex with oscillations in the median rotation and vertical velocities as a function of radius, vertical asymmetries, and new correlations, including a bimodality with disc stars with large angular momentum moving vertically upwards from below the plane, and disc stars with slightly lower angular momentum moving preferentially downwards; (ii) we resolve the kinematic substructure (diagonal ridges) in the outer parts of the disc for the first time; (iii) the red sequence that has been associated with the proto-Galactic disc that was present at the time of the merger with Gaia-Enceladus-Sausage is currently radially concentrated up to around 14 kpc, while the blue sequence that has been associated with debris of the satellite extends beyond that; (iv) there are density structures in the outer disc, both above and below the plane, most probably related to Monoceros, the Anticentre Stream, and TriAnd, for which the Gaia data allow an exhaustive selection of candidate member stars and dynamical study; and (v) the open clusters Berkeley 29 and Saurer 1, despite being located at large distances from the Galactic centre, are on nearly circular disc-like orbits. Conclusions: Even with our simple preliminary exploration of the Gaia EDR3, we demonstrate how, once again, these data from the European Space Agency are crucial for our understanding of the different pieces of our Galaxy and their connection to its global structure and history. Movie is available at https://www.aanda.or
    corecore