60 research outputs found

    Measuring Space-Time Geometry over the Ages

    Full text link
    Theorists are often told to express things in the "observational plane". One can do this for space-time geometry, considering "visual" observations of matter in our universe by a single observer over time, with no assumptions about isometries, initial conditions, nor any particular relation between matter and geometry, such as Einstein's equations. Using observables as coordinates naturally leads to a parametrization of space-time geometry in terms of other observables, which in turn prescribes an observational program to measure the geometry. Under the assumption of vorticity-free matter flow we describe this observational program, which includes measurements of gravitational lensing, proper motion, and redshift drift. Only 15% of the curvature information can be extracted without long time baseline observations, and this increases to 35% with observations that will take decades. The rest would likely require centuries of observations. The formalism developed is exact, non-perturbative, and more general than the usual cosmological analysis.Comment: Originally written for the Gravity Research Foundation 2012 Awards for Essays on Gravitation and received Honorable Mentio

    A Century of Cosmology

    Full text link
    In the century since Einstein's anno mirabilis of 1905, our concept of the Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across to an observed horizon about 30 Gpc across that is only a tiny fraction of an immensely large inflated bubble. The expansion of our knowledge about the Universe, both in the types of data and the sheer quantity of data, has been just as dramatic. This talk will summarize this century of progress and our current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex with 2 figure

    Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors

    Get PDF
    Presented in this paper is a Markov chain Monte Carlo (MCMC) routine for conducting coherent parameter estimation for interferometric gravitational wave observations of an inspiral of binary compact objects using data from multiple detectors. The MCMC technique uses data from several interferometers and infers all nine of the parameters (ignoring spin) associated with the binary system, including the distance to the source, the masses, and the location on the sky. The Metropolis-algorithm utilises advanced MCMC techniques, such as importance resampling and parallel tempering. The data is compared with time-domain inspiral templates that are 2.5 post-Newtonian (PN) in phase and 2.0 PN in amplitude. Our routine could be implemented as part of an inspiral detection pipeline for a world wide network of detectors. Examples are given for simulated signals and data as seen by the LIGO and Virgo detectors operating at their design sensitivity.Comment: 10 pages, 4 figure

    Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data

    Full text link
    Presented is a description of a Markov chain Monte Carlo (MCMC) parameter estimation routine for use with interferometric gravitational radiational data in searches for binary neutron star inspiral signals. Five parameters associated with the inspiral can be estimated, and summary statistics are produced. Advanced MCMC methods were implemented, including importance resampling and prior distributions based on detection probability, in order to increase the efficiency of the code. An example is presented from an application using realistic, albeit fictitious, data.Comment: submitted to Classical and Quantum Gravity. 14 pages, 5 figure

    A Search for the Most Massive Galaxies. II. Structure, Environment and Formation

    Get PDF
    We study a sample of 43 early-type galaxies, selected from the SDSS because they appeared to have velocity dispersion > 350 km/s. High-resolution photometry in the SDSS i passband using HRC-ACS on board the HST shows that just less than half of the sample is made up of superpositions of two or three galaxies, so the reported velocity dispersion is incorrect. The other half of the sample is made up of single objects with genuinely large velocity dispersions. None of these objects has sigma larger than 426 +- 30 km/s. These objects define rather different relations than the bulk of the early-type galaxy population: for their luminosities, they are the smallest, most massive and densest galaxies in the Universe. Although the slopes of the scaling relations they define are rather different from those of the bulk of the population, they lie approximately parallel to those of the bulk "at fixed sigma". These objects appear to be of two distinct types: the less luminous (M_r>-23) objects are rather flattened and extremely dense for their luminosities -- their properties suggest some amount of rotational support and merger histories with abnormally large amounts of gaseous dissipation. The more luminous objects (M_r<-23) tend to be round and to lie in or at the centers of clusters. Their properties are consistent with the hypothesis that they are BCGs. Models in which BCGs form from predominantly radial mergers having little angular momentum predict that they should be prolate. If viewed along the major axis, such objects would appear to have abnormally large sigma for their sizes, and to be abnormally round for their luminosities. This is true of the objects in our sample once we account for the fact that the most luminous galaxies (M_r<-23.5), and BCGs, become slightly less round with increasing luminosity.Comment: 21 pages, 19 figures, accepted for publication in MNRA

    A near-infrared morphological comparison of high-redshift submm and radio galaxies: massive star-forming discs vs relaxed spheroids

    Full text link
    We present deep, high-quality K-band images of complete subsamples of powerful radio and sub-mm galaxies at z=2. The data were obtained in the best available seeing at UKIRT and Gemini North, with integration times scaled to ensure that comparable rest-frame surface brightness levels are reached for all galaxies. We fit two-dimensional axi-symmetric galaxy models to determine galaxy morphologies at rest-frame optical wavelengths > 4000A, varying luminosity, axial ratio, half-light radius, and Sersic index. We find that, while some images show evidence of galaxy interactions, >95% of the rest-frame optical light in all galaxies is well-described by these simple models. We also find a clear difference in morphology between these two classes of galaxy; fits to the individual images and image stacks reveal that the radio galaxies are moderately large (=8.4+-1.1kpc; median r{1/2}=7.8), de Vaucouleurs spheroids ( = 4.07+-0.27; median n=3.87), while the sub-mm galaxies appear to be moderately compact (=3.4+-0.3kpc; median r{1/2}=3.1kpc) exponential discs (=1.44+-0.16; median n=1.08). We show that the z=2 radio galaxies display a well-defined Kormendy relation but that, while larger than other recently-studied high-z massive galaxy populations, they are still ~1.5 times smaller than their local counterparts. The scalelengths of the starlight in the sub-mm galaxies are comparable to those reported for the molecular gas. Their sizes are also similar to those of comparably massive quiescent galaxies at z>1.5. In terms of stellar mass surface density, the majority of the radio galaxies lie within the locus defined by local ellipticals. In contrast, while best modelled as discs, most of the sub-mm galaxies have higher stellar mass densities than local galaxies, and appear destined to evolve into present-day massive ellipticals.Comment: 24 pages, 9 figure

    The ATLAS3D project - XXIX : The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images

    Get PDF
    Date of Acceptance: 25/09/2014Galactic archaeology based on star counts is instrumental to reconstruct the past mass assembly of Local Group galaxies. The development of new observing techniques and data reduction, coupled with the use of sensitive large field of view cameras, now allows us to pursue this technique in more distant galaxies exploiting their diffuse low surface brightness (LSB) light. As part of the ATLAS3D project, we have obtained with the MegaCam camera at the Canada-France-Hawaii Telescope extremely deep, multiband images of nearby early-type galaxies (ETGs). We present here a catalogue of 92 galaxies from the ATLAS3D sample, which are located in low- to medium-density environments. The observing strategy and data reduction pipeline, which achieve a gain of several magnitudes in the limiting surface brightness with respect to classical imaging surveys, are presented. The size and depth of the survey are compared to other recent deep imaging projects. The paper highlights the capability of LSB-optimized surveys at detecting new prominent structures that change the apparent morphology of galaxies. The intrinsic limitations of deep imaging observations are also discussed, among those, the contamination of the stellar haloes of galaxies by extended ghost reflections, and the cirrus emission from Galactic dust. The detection and systematic census of fine structures that trace the present and past mass assembly of ETGs are one of the prime goals of the project. We provide specific examples of each type of observed structures - tidal tails, stellar streams and shells - and explain how they were identified and classified. We give an overview of the initial results. The detailed statistical analysis will be presented in future papers.Peer reviewedFinal Accepted Versio

    The properties of (sub)millimetre-selected galaxies as revealed by CANDELS HST WFC3/IR imaging in GOODS-South

    Full text link
    We have exploited the HST CANDELS WFC3/IR imaging to study the properties of (sub-)mm galaxies in GOODS-South. After using the deep radio and Spitzer imaging to identify galaxy counterparts for the (sub-)mm sources, we have used the new CANDELS data in two ways. First, we have derived improved photometric redshifts and stellar masses, confirming that the (sub-)mm galaxies are massive (=2.2x10^11 M_solar) galaxies at z=1-3. Second, we have exploited the depth and resolution of the WFC3/IR imaging to determine the sizes and morphologies of the galaxies at rest-frame optical wavelengths, fitting two-dimensional axi-symmetric Sersic models. Crucially, the WFC3/IR H-band imaging enables modelling of the mass-dominant galaxy, rather than the blue high-surface brightness features which often dominate optical (rest-frame UV) images of (sub-)mm galaxies, and can confuse visual morphological classification. As a result of this analysis we find that >95% of the rest-frame optical light in almost all of the (sub-)mm galaxies is well-described by either a single exponential disk, or a multiple-component system in which the dominant constituent is disk-like. We demonstrate that this conclusion is consistent with the results of high-quality ground-based K-band imaging, and explain why. The massive disk galaxies which host luminous (sub-)mm emission are reasonably extended (r_e=4 kpc), consistent with the sizes of other massive star-forming disks at z~2. In many cases we find evidence of blue clumps within the sources, with the mass-dominant disk becoming more significant at longer wavelengths. Finally, only a minority of the sources show evidence for a major galaxy-galaxy interaction. Taken together, these results support the view that most (sub-)mm galaxies at z~2 are simply the most extreme examples of normal star-forming galaxies at that era.Comment: 30 pages, 9 figure

    Intermediate resolution H-beta spectroscopy and photometric monitoring of 3C 390.3 I. Further evidence of a nuclear accretion disk

    Full text link
    We have monitored the AGN 3C390.3 between 1995 and 2000.Two large amplitude outbursts, of different duration, in continuum and H beta light were observed ie.: in October 1994 a brighter flare that lasted about 1000 days and in July 1997 another one that lasted about 700 days were detected. The flux in the H beta wings and line core vary simultaneously, a behavior indicative of predominantly circular motions in the BLR.Important changes of the Hbeta emission profiles were detected: at times, we found profiles with prominent asymmetric wings, as those normaly seen in Sy1s, while at other times, we observe profiles with weak almost symmetrical wings, similar to those seen in Sy1.8s. We found that the radial velocity difference between the red and blue bumps is anticorrelated with the light curves of H beta and continuum radiation.e found that the radial velocity difference between the red and blue bumps is anticorrelated with the light curves of H-beta and continuum radiation. Theoretical H-beta profiles were computed for an accretion disk, the observed profiles are best reproduced by an inclined disk (25 deg) whose region of maximum emission is located roughly at 200 Rg. The mass of the black hole in 3C 390.3, estimated from the reverberation analysis is Mrev = 2.1 x 10^9 Msun, ie. 5 times larger than previous estimatesComment: 18 pages, 13 figures, 4 tables. to appear in Astronomy and Astrophysic

    The spectral energy distribution of the central parsecs of the nearest AGN

    Full text link
    Spectral energy distributions (SEDs) of the central few tens of parsec region of some of the nearest, most well studied, active galactic nuclei (AGN) are presented. These genuine AGN-core SEDs, mostly from Seyfert galaxies, are characterised by two main features: an IR bump with the maximum in the 2-10 micron range, and an increasing X-ray spectrum in the 1 to ~200 keV region. These dominant features are common to Seyfert type 1 and 2 objects alike. Type 2 AGN exhibit a sharp drop shortward of 2 micron, with the optical to UV region being fully absorbed, while type 1s show instead a gentle 2 micron drop ensued by a secondary, partially-absorbed optical to UV emission bump. Assuming the bulk of optical to UV photons generated in these AGN are reprocessed by dust and re-emitted in the IR in an isotropic manner, the IR bump luminosity represents >70% of the total energy output in these objects while the high energies above 20 keV are the second energetically important contribution. Galaxies selected by their warm IR colours, i.e. presenting a relatively-flat flux distribution in the 12 to 60 micron range have often being classified as AGN. The results from these high spatial resolution SEDs question this criterion as a general rule. It is found that the intrinsic shape of the IR SED of an AGN and inferred bolometric luminosity largely depart from those derived from large aperture data. AGN luminosities can be overestimated by up to two orders of magnitude if relying on IR satellite data. We find these differences to be critical for AGN luminosities below or about 10^{44} erg/s. Above this limit, AGNs tend to dominate the light of their host galaxy regardless of the aperture size used. We tentatively mark this luminosity as a threshold to identify galaxy-light- vs AGN- dominated objects.Comment: 50 pages, 14 figures. Accepted for publication in MNRA
    • …
    corecore