94 research outputs found

    Genotype-specific interactions and the trade-off between host and parasite fitness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete <it>Hyaloperonospora arabidopsis </it>(= <it>parasitica</it>), a natural pathogen of the Brassicaceae <it>Arabidopsis thaliana</it>.</p> <p>Results</p> <p>We performed a controlled cross inoculation experiment confronting six lines of the host plant with seven strains of the parasite in order to evaluate genetic variation for phenotypic traits of infection among hosts, parasites, and distinct combinations. Parasite infection intensity and transmission were highly variable among parasite strains and host lines but depended also on the interaction between particular genotypes of the protagonists, and genetic variation for the infection phenotype of parasites from natural populations was found even at a small spatial scale within population. Furthermore, increased parasite fitness led to a significant decrease in host fitness only on a single host line (Gb), although a trade-off between these two traits was expected because host and parasite share the same resource pool for their respective reproduction. We propose that different levels of compatibility dependent on genotype by genotype interactions might lead to different amounts of resources available for host and parasite reproduction. This variation in compatibility could thus mask the expected negative relationship between host and parasite fitness, as the total resource pool would not be constant.</p> <p>Conclusion</p> <p>These results highlight the importance of host variation in the determination of parasite fitness traits. This kind of interaction may in turn decouple the relationship between parasite transmission and its negative effect on host fitness, altering theoretical predictions of parasite evolution.</p

    Notice de la carte des forêts anciennes du Parc Naturel Régional du Luberon (1:40 000), avec référence aux autres usages du sol

    Get PDF
    Les paysages ont vécu une révolution durant ces 150 dernières années. La connaissance de ces transformations est utile à la gestion des paysages aujourd’hui. Dans le cadre d’un partenariat entre le PNRL et le WWF relatif à l’inventaire des forêts anciennes, la digitalisation des 7 feuilles des minutes de la carte d’État-major (1860, 1 : 40 000) couvrant le territoire a été réalisée. Ceci donne une image des paysages vers 1860 : ils se répartissent entre les labours (43%), les forêts (27%), les pâquis (17%), les vignobles (6%) et les prairies (3%). Les milieux très artificialisés représentent seulement 2% du territoire. Le taux de boisement vers 1860 est de 27%, contre 51% aujourd’hui, soit respectivement 51 852 ha contre 99 670 ha. Beaucoup des forêts actuelles sont récentes, installées sur des terres antérieurement labourées ou pâturées. En comparant les forêts de 1860 et celles de 2003 (IFN), il est possible d’isoler les forêts anciennes, dont le couvert boisé est continu depuis plus de 150 ans, soit 46 776 ha. Leur part dans la forêt actuelle (47%) est importante par rapport à la moyenne régionale. Le massif du Luberon et les Monts du Vaucluse comportent la plus grande proportion de forêts anciennes. Dans le Pays d’Apt et le Luberon oriental, en revanche, le boisement a été multiplié par plus de 3 entre 1860 et 2003. L’écologie forestière a montré les conséquences des usages historiques sur la productivité des sols, le stock de carbone ou la biodiversité associée. Celles-ci restent à préciser sur le territoire du PNR du Luberon

    The effect of environmental heterogeneity on RPW8-mediated resistance to powdery mildews in Arabidopsis thaliana

    Get PDF
    Background and Aims: The biotic and abiotic environment of interacting hosts and parasites may vary considerably over small spatial and temporal scales. It is essential to understand how different environments affect host disease resistance because this determines frequency of disease and, importantly, heterogeneous environments can retard direct selection and potentially maintain genetic variation for resistance in natural populations. Methods: The effect of different temperatures and soil nutrient conditions on the outcome of infection by a pathogen was quantified in Arabidopsis thaliana. Expression levels of a gene conferring resistance to powdery mildews, RPW8, were compared with levels of disease to test a possible mechanism behind variation in resistance. Key Results: Most host genotypes changed from susceptible to resistant across environments with the ranking of genotypes differing between treatments. Transcription levels of RPW8 increased after infection and varied between environments, but there was no tight association between transcription and resistance levels. Conclusions: There is a strong potential for a heterogeneous environment to change the resistance capacity of A. thaliana genotypes and hence the direction and magnitude of selection in the presence of the pathogen. Possible causative links between resistance gene expression and disease resistance are discussed in light of the present results on RPW8

    Killing them softly:managing pathogen polymorphism and virulence in spatially variable environments

    Get PDF
    Understanding why pathogen populations are genetically variable is vital because genetic variation fuels evolution, which often hampers disease control efforts. Here I argue that classical models of evolution in spatially variable environments – specifically, models of hard and soft selection – provide a useful framework to understand the maintenance of pathogen polymorphism and the evolution of virulence. First, the similarities between models of hard and soft selection and pathogen life cycles are described, highlighting how the type and timing of pathogen control measures impose density regulation that may affect both the level of pathogen polymorphism and virulence. The article concludes with an outline of potential lines of future theoretical and experimental work

    Life-history correlations change under coinfection leading to higher pathogen load

    Get PDF
    The ability of a parasite strain to establish and grow on its host may be drastically altered by simultaneous infection by other parasite strains. However, we still lack an understanding of how life-history allocations may change under coinfection, although life-history correlations are a critical mechanism restricting the evolutionary potential and epidemiological dynamics of pathogens. Here, we study how life-history stages and their correlations change in the obligate fungal pathogen Podosphaera plantaginis under single infection and coinfection scenarios. We find increased pathogen loads under coinfection, but this is not explained by an enhanced performance at any of the life-history stages that constitute infections. Instead, we show that under coinfection the correlation between timing of sporulation and final pathogen load becomes positive. The changes in pathogen life-history allocations leading to more severe infections under coinfection can have far-reaching epidemiological consequences, as well as implication for our understanding of the evolution of virulence.Peer reviewe

    Climate change and disease eco-evolution

    Get PDF
    Climate change is causing warmer and more variable temperatures as well as physical flux in natural populations, which will affect the ecology and evolution of infectious disease epidemics. Using replicate semi-natural populations of a coevolving freshwater invertebrate-parasite system (host: Daphnia magna, parasite: Pasteuria ramosa), we quantified the effects of ambient temperature and population mixing (physical flux within populations) on epidemic size and population health. Each population was seeded with an identical suite of host genotypes and dose of parasite transmission spores. Biologically reasonable increases in environmental temperature caused larger epidemics, and population mixing reduced overall epidemic size. Mixing also had a detrimental effect on host populations independent of disease. Epidemics drove parasite-mediated selection, leading to a loss of host genetic diversity, and mixed populations experienced greater evolution due to genetic drift over the season. These findings further our understanding of how diversity loss will reduce the host populations’ capacity to respond to changes in selection, therefore stymying adaptation to further environmental change

    Understanding the ecology and evolution of host-parasite interactions across scales

    Get PDF
    Predicting the emergence, spread and evolution of parasites within and among host populations requires insight to both the spatial and temporal scales of adaptation, including an understanding of within-host up through community-level dynamics. Although there are very few pathosystems for which such extensive data exist, there has been a recent push to integrate studies performed over multiple scales or to simultaneously test for dynamics occurring across scales. Drawing on examples from the literature, with primary emphasis on three diverse host-parasite case studies, we first examine current understanding of the spatial structure of host and parasite populations, including patterns of local adaptation and spatial variation in host resistance and parasite infectivity. We then explore the ways to measure temporal variation and dynamics in host-parasite interactions and discuss the need to examine change over both ecological and evolutionary timescales. Finally, we highlight new approaches and syntheses that allow for simultaneous analysis of dynamics across scales. We argue that there is great value in examining interplay among scales in studies of host-parasite interactions.Peer reviewe

    Epidemiology of a Daphnia-Multiparasite System and Its Implications for the Red Queen

    Get PDF
    The Red Queen hypothesis can explain the maintenance of host and parasite diversity. However, the Red Queen requires genetic specificity for infection risk (i.e., that infection depends on the exact combination of host and parasite genotypes) and strongly virulent effects of infection on host fitness. A European crustacean (Daphnia magna) - bacterium (Pasteuria ramosa) system typifies such specificity and high virulence. We studied the North American host Daphnia dentifera and its natural parasite Pasteuria ramosa, and also found strong genetic specificity for infection success and high virulence. These results suggest that Pasteuria could promote Red Queen dynamics with D. dentifera populations as well. However, the Red Queen might be undermined in this system by selection from a more common yeast parasite (Metschnikowia bicuspidata). Resistance to the yeast did not correlate with resistance to Pasteuria among host genotypes, suggesting that selection by Metschnikowia should proceed relatively independently of selection by Pasteuria

    The Relationship of Within-Host Multiplication and Virulence in a Plant-Virus System

    Get PDF
    Background. Virulence does not represent any obvious advantage to parasites. Most models of virulence evolution assume that virulence is an unavoidable consequence of within-host multiplication of parasites, resulting in trade-offs between within-host multiplication and between-host transmission fitness components. Experimental support for the central assumption of this hypothesis, i.e., for a positive correlation between within-host multiplication rates and virulence, is limited for plant-parasite systems. Methodology/Principal Findings. We have addressed this issue in the system Arabidopsis thaliana-Cucumber mosaic virus (CMV). Virus multiplication and the effect of infection on plant growth and on viable seed production were quantified for 21 Arabidopsis wild genotypes infected by 3 CMV isolates. The effect of infection on plant growth and seed production depended of plant architecture and length of postembryonic life cycle, two genetically-determined traits, as well as on the time of infection in the plant's life cycle. A relationship between virus multiplication and virulence was not a general feature of this host-parasite system. This could be explained by tolerance mechanisms determined by the host genotype and operating differently on two components of plant fitness, biomass production and resource allocation to seeds. However, a positive relationship between virus multiplication and virulence was detected for some accessions with short life cycle and high seed weight to biomass ratio, which show lower levels of tolerance to infection. Conclusions/Significance. These results show that genotype-specific tolerance mechanisms may lead to the absence of a clear relationship between parasite multiplication and virulence. Furthermore, a positive correlation between parasite multiplication and virulence may occur only in some genotypes and/or environmental conditions for a given host-parasite system. Thus, our results challenge the general validity of the trade-off hypothesis for virulence evolution, and stress the need of considering the effect of both the host and parasite genotypes in analyses of host-parasite interactions. © 2007 Pagán et al.Ministerio de Educación y Ciencia, Spain.Peer Reviewe

    Host Responses in Life-History Traits and Tolerance to Virus Infection in Arabidopsis thaliana

    Get PDF
    Knowing how hosts respond to parasite infection is paramount in understanding the effects of parasites on host populations and hence host–parasite co-evolution. Modification of life-history traits in response to parasitism has received less attention than other defence strategies. Life-history theory predicts that parasitised hosts will increase reproductive effort and accelerate reproduction. However, empirical analyses of these predictions are few and mostly limited to animal-parasite systems. We have analysed life-history trait responses in 18 accessions of Arabidopsis thaliana infected at two different developmental stages with three strains of Cucumber mosaic virus (CMV). Accessions were divided into two groups according to allometric relationships; these groups differed also in their tolerance to CMV infection. Life-history trait modification upon virus infection depended on the host genotype and the stage at infection. While all accessions delayed flowering, only the more tolerant allometric group modified resource allocation to increase the production of reproductive structures and progeny, and reduced the length of reproductive period. Our results are in agreement with modifications of life-history traits reported for parasitised animals and with predictions from life-history theory. Thus, we provide empirical support for the general validity of theoretical predictions. In addition, this experimental approach allowed us to quantitatively estimate the genetic determinism of life-history trait plasticity and to evaluate the role of life-history trait modification in defence against parasites, two largely unexplored issues
    corecore