233 research outputs found

    Projecting the Bethe-Salpeter Equation onto the Light-Front and back: A Short Review

    Full text link
    The technique of projecting the four-dimensional two-body Bethe-Salpeter equation onto the three-dimensional Light-Front hypersurface, combined with the quasi-potential approach, is briefly illustrated, by placing a particular emphasis on the relation between the projection method and the effective dynamics of the valence component of the Light-Front wave function. Some details on how to construct the Fock expansion of both i) the Light-Front effective interaction and ii) the electromagnetic current operator, satisfying the proper Ward-Takahashi identity, will be presented, addressing the relevance of the Fock content in the operators living onto the Light-Front hypersurface. Finally, the generalization of the formalism to the three-particle case will be outlined.Comment: 16 pages, macros included. Mini-review to be printed in a regular issue of Few-Body Systems devoted to the Workshop on "Relativistic Description of Two- and Three-body Systems in Nuclear Physics" ECT* Trento, 19 - 23 October 200

    Current in the light-front Bethe-Salpeter formalism II: Applications

    Full text link
    We pursue applications of the light-front reduction of current matrix elements in the Bethe-Salpeter formalism. The normalization of the reduced wave function is derived from the covariant framework and related to non-valence probabilities using familiar Fock space projection operators. Using a simple model, we obtain expressions for generalized parton distributions that are continuous. The non-vanishing of these distributions at the crossover between kinematic regimes (where the plus component of the struck quark's momentum is equal to the plus component of the momentum transfer) is tied to higher Fock components. Moreover continuity holds due to relations between Fock components at vanishing plus momentum. Lastly we apply the light-front reduction to time-like form factors and derive expressions for the generalized distribution amplitudes in this model.Comment: 12 pages, 6 figures, RevTex

    Gauge invariant reduction to the light-front

    Get PDF
    The problem of constructing gauge invariant currents in terms of light-cone bound-state wave functions is solved by utilising the gauging of equations method. In particular, it is shown how to construct perturbative expansions of the electromagnetic current in the light-cone formalism, such that current conservation is satisfied at each order of the perturbation theory.Comment: 12 pages, revtex

    Semiconductive and Photoconductive Properties of the Single Molecule Magnets Mn12_{12}-Acetate and Fe8_8Br8_8

    Full text link
    Resistivity measurements are reported for single crystals of Mn12_{12}-Acetate and Fe8_8Br8_8. Both materials exhibit a semiconductor-like, thermally activated behavior over the 200-300 K range. The activation energy, EaE_a, obtained for Mn12_{12}-Acetate was 0.37 ±\pm 0.05 eV, which is to be contrasted with the value of 0.55 eV deduced from the earlier reported absorption edge measurements and the range of 0.3-1 eV from intramolecular density of states calculations, assuming 2Ea2E_a= EgE_g, the optical band gap. For Fe8_8Br8_8, EaE_a was measured as 0.73 ±\pm 0.1 eV, and is discussed in light of the available approximate band structure calculations. Some plausible pathways are indicated based on the crystal structures of both lattices. For Mn12_{12}-Acetate, we also measured photoconductivity in the visible range; the conductivity increased by a factor of about eight on increasing the photon energy from 632.8 nm (red) to 488 nm (blue). X-ray irradiation increased the resistivity, but EaE_a was insensitive to exposure.Comment: 7 pages, 8 figure

    Exploring skewed parton distributions with two body models on the light front II: covariant Bethe-Salpeter approach

    Get PDF
    We explore skewed parton distributions for two-body, light-front wave functions. In order to access all kinematical regimes, we adopt a covariant Bethe-Salpeter approach, which makes use of the underlying equation of motion (here the Weinberg equation) and its Green's function. Such an approach allows for the consistent treatment of the non-wave function vertex (but rules out the case of phenomenological wave functions derived from ad hoc potentials). Our investigation centers around checking internal consistency by demonstrating time-reversal invariance and continuity between valence and non-valence regimes. We derive our expressions by assuming the effective qq potential is independent of the mass squared, and verify the sum rule in a non-relativistic approximation in which the potential is energy independent. We consider bare-coupling as well as interacting skewed parton distributions and develop approximations for the Green's function which preserve the general properties of these distributions. Lastly we apply our approach to time-like form factors and find similar expressions for the related generalized distribution amplitudes.Comment: 25 pages, 12 figures, revised (minor changes but essential to consistency

    Search for CP violation in D0 and D+ decays

    Full text link
    A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.Comment: 12 pages, 4 figure

    Measurements of the Sigma_c^0 and Sigma_c^{++} Mass Splittings

    Full text link
    Using a high statistics sample of photoproduced charmed particles from the FOCUS experiment at Fermilab (FNAL-E831), we measure the mass splittings of the charmed baryons Sigma_c^0 and Sigma_c^{++}. We find M(Sigma_c^0 - Lambda_c^+) = 167.38 +/- 0.21 +/- 0.13 MeV/c^2 and M(Sigma_c^++ - Lambda_c^+) = 167.35 +/- 0.19 +/- 0.12 MeV/c^2 with samples of 362 +/- 36 and 461 +/- 39 events, respectively. We measure the isospin mass splitting M(Sigma_c^++ - Sigma_c^0) to be -0.03 +/- 0.28 +/- 0.11 Mev/c^2. The first errors are statistical and the second are systematic.Comment: 10 pages, 2 figure

    A measurement of lifetime differences in the neutral D-meson system

    Full text link
    Using a high statistics sample of photoproduced charm particles from the FOCUS experiment at Fermilab, we compare the lifetimes of neutral D mesons decaying via D0 to K- pi+ and K- K+ to measure the lifetime differences between CP even and CP odd final states. These measurements bear on the phenomenology of D0 - D0bar mixing. If the D0 to K-pi+ is an equal mixture of CP even and CP odd eigenstates, we measure yCP = 0.0342 \pm 0.0139 \pm 0.0074.Comment: 15 pages, 5 figure

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
    corecore