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Gauge invariant reduction to the light front
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The problem of constructing gauge invariant currents in terms of light-front bound-state wave functions is
solved by utilizing the gauging of equations method. In particular, we show how to construct perturbative
expansions of the electromagnetic current in the light-front formalism such that current conservation is satisfied
at each order of the perturbation theory.
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[. INTRODUCTION conservation is satisfied at each order of the perturbation
theory.

Equal light-front(LF) “time” wave functions possess the
important property of having boost transformations which |I. LF REDUCTION OF THE TWO-BODY EQUATION
are kinematical. This feature makes the LF formalism a pow-
erful tool in the investigation of relativistic processes. Lately
the LF approach has often been mentiofiefdin relation to
recent measurements of proton electromagnetic form factors G=Gy+ GoKG. 1)
[2,3]. The LF formalism allows one to maintain Poincare
invariance in a simple way, and this can be of great benefit irb
analyzing the physics behind any particular form-factor be-
havior[1,4,5. In this respect it would be extremely desirable _ 1
to develop an approach to the problem of electromagnetic G(P.k,p)= (ZT)ZI dk“dp~G(P,k,p), 2
currents which combines the three-dimensional nature of the

boost invariant LF wave functions with gauge invariance.\here the underlined momente=(p*,p,) denote the LF

The theory of gauge invariant currents has recently been dghree-dimensional part of the four-vectpe=(p~,p*,p,),

veloped for the usual four-dimensional Bethe-SalpeBs)  \wherep* = (p°+ p3)/y2 andp, =(p*,p?). There is no ne-

approach[6] and for its three-dimensional spectator reduc-cessity here to specify the precise form for the relative mo-

tion [7,8]. Here we shall extend this theory to obtain the mentap andk; they could be chosen, for example, as the

gauge invariant three-dimensional reduction to the LF. initial and final momenta of the second particle. The equation
So far, what has been knoy8,10] is that, for any given on the LF corresponding to the BS of Ed) is

two-body BS Green functio® and two-body vertex func-

tion I'# [11], one can derive a LF reduced vertex function G=Gy+GyVG, 3)

A* such that, when sandwiched between LF wave functions

[see Eq(9)], it gives the matrix element df* between BS where the LF potential i§9,12,13

wave functiongsee Eq(5)]. The latter is the initial expres- ~ B

sion for the transition current, and if it is gauge invariant, V=G51—G*1

then the goal of constructing a gauge invariant current in

Consider the Green function BS equation for the case of
two scalar particle$:

efine the LF two-“time” Green functiorG(P,k,p) as[9]

terms of the LF wave functions is achieved. Unfortunately =Gy Y (GoKGo) +(GoKGoK Gg)
this is not satisfactory from a practical point of view because
A* represents an infinite series even in the simplest case of ~ —(GoKGo)G, {(GoKGo)+ - --1G, . (4)

the one-body Mandelstam curreiit=I"§ . In addition, the
potential V defining the LF wave functiofisee Eq.(4)] is  Here the angular brackets and ) stand for equating LF
also only expressible as an infinite series. “times” (corresponding to the integration over relative LF
The goal of this paper is to derive a conserved current irenergiegin the final and initial states, respectively, as in Eq.
terms of LF bound-state wave functions corresponding td2). Note that products of LF operatotguantities labeled
any LF potential given by equal-time Feynman diagramswith a tilde or enclosed by angular brackekgve implied
This enables us to go further: namely, to derive a gaug¢hree-dimensional integrations  over d®p=dp*dp,
invariant expansion of the current when only a part of the=P*dxdp, in contrast to the four-dimensional integrations
potential is taken into account nonperturbatively. Currenimplied by products of BS quantities.
A similar expansion was first derived {14] (and later
rederived in many paperfor the projection onto the hyper-
*On leave from The Mathematical Institute of Georgian Academy
of Sciences, Thilisi, Georgia. Electronic address:
sasha.kvinikhidze@flinders.edu.au The case of spinor particles will be considered elsewhere.
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plane where particles have the same usual time. The infinite Clearly, if A* is given(in all its complexity by Eq. (8)

series of Eq(4) for the LF potentiaV suggests that the LF and ¥ is the bound-state solution of the LF bound-state

wave function be expanded in orders of the strength of thequation defined by the homogeneous part of B.
BS potentialk. Our task is to construct gauge invariant cur-

rents in terms of these LF wave functions. ‘T’=60V‘T’, (12)

. GAUGE INVARIANT CURRENTS then the current expressed as the matrix element of s
i _ conserved, as it is equal to the matrix element of ).

In order to calculate electromagnetic or weak propertiejowever, for practical applications, it is useful to develop a
of bound states, we need to construct the corresponding CUfge invariant perturbation theory based on the expansion
rents. We first start with the BS approach where the electrogi\,en by Eq.(4). In this paper our task is to develop such a
magnetic current can be obtained diagramatically by attachheory where gauge invariance is achieved at each order of
ing a photon everywhere in Edl) [6]. The resulting the perturbation. By contrast, in a recent series of paéiis
expression consists of the matrix element of the vertex funcey;g problem has been approached with the strategy of im-
tion I'* taken between initialV=¥(P,p) and final ¥ proving gauge invariance by increasing the order of pertur-

=¥ (K,k) BS bound-state wave functions: bation.
Our approach is founded on the fact that equating LF
J4(K,P)=WTHY, (5) times in the initial state X; —x, =0) and similarly in the
final state, which implies integration over relative “energies”
where in momentum space, as in E®), does not change either the
Ward-Takahashi identityWTI) or the Ward identity(WI):
#=TE+K-, 6 e,
HereT'§ denotes the sum of single-particle currents &rid 9.G"=eG-Ge, (12

is the interaction current. The vertex functibtt is related to

the gauged Green functid®” (five-point function by whereq=K—P is the momentum transferred by the current

to the initial bound state and where the operaahifts the
GH=GT*G. 7) momenta and picks up the charges of the constituents as
required. Its four-dimensional form can be found [i),

Equation(5) is obtained from Eq(7) by taking residues at while in the present LF versioe is defined by
the initial and final bound-state pol¢$l]. The correspond-
ing axial current can be found in the same way by making an e(K,k;P,p)=i(27)" 6% K—P—q)[e,8%k,—p1—q)
axial-vector insertion instead of attaching a photon. Define - 5 T
the LF two-time five-point Green functio6* and the cor- +€20%(ke=p2—q)]
1 i I
responding vertex functioA* by [9] —i(2m) 8K~ P—Q)[eléG(Ez—Ez)
é#(K,E;P,E)z—(Zi)ZJ dk~dp~GH(K,k;P,p)=GA*G. +eadika=pyl 13
(8) Heree; (without a caretis theith-particle charge operator.
We then define the gauging of a two-time quantity as, first,
Then it is easy to see that the current of Es).is also given  the gauging of the corresponding four-dimensional quantity
by a corresponding matrix element of LF quantities: and, then, the equating of times in the initial and final states;
e.g., for the Green function we have
e = M
FRIZEARE, © (G)*=(G)*=(GH). (14)
where is the LF bound-state wave function given by 4 oo pe argued that E¢L4) is not even a matter of defini-
tion, if one recalls that “gauging” is equivalent to taking a
T (P,p)= iJ dp W (P,p). (10) functional derivative over an auxilary field associated with a
= 27 given curren{6], and as such, does not depend on whether it
is taken before or after the times of the particles are equated.
The price paid for the relative simplicity of EQ) (involv- Using this definition, one can gauge Hg), in this way
ing the LF wave function? which depends only on physical obtainingV# expressed as a perturbation series with respect
three-dimensional momentes the complexity of the LF ver- to powers of the strength of the BS interactiinA similar
tex function A* which involves an infinite series in powers perturbation series can be written far simply from its
of K (even for the case of one-body Mandelstam BS currentgjefinition in Eq.(8). It is then easy to see that
I'*=T%) and the potential/ which is also given by an infi-
nite series, Eq(4). Ak=AG+VH, (15
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whereA§ is defined in the same way as*: namely, §
Ab=Gy1GEG, . (16) (@) <——>
Note that to obtain Eq(15) one needs to use the fact that % % »

(85 = At w o (T) - ()0

which follows from formally gauging the identity operator as  FIG. 1. Contributions t&,V4G,, whereV# is the gauged one-
o o ~ ~ particle-exchange light-front two-body quasipotential, as given in
[GglGO]"Z GglG{)‘Jr [Ggl]“GOZ 0. (19 Eq. (24): (a) gauged Bethe-Salpeter kernel contributitis),gauged
constituent contribution. Leftright) angular brackets indicate that
The result of Eq(15) is central to this paper and allows us 10 the light-front “times” of the left (right) constituent legs of the
develop the sought-after gauge invariant perturbation theorgnclosed Feynman diagrams are set equal. The subtracted second
It is evident that no matter how one defines the perturbaterm in (b) removes the equal light-front “time” contribution com-
tion expansion of the LF potenti&l, eachnth-order termV,, ing from the intermediate state of the first term.
of the expansion of Eq4) and the corresponding terdf, in
the expansion of Eq(15) are related to each other via the Apart from the term involvingKy, which corresponds to
WTlI's attachments of a photon inside the kerfiElg. 1(a)], V¥
R R contains  attachments to the  constituents—e.g.,
9uVn=8Vn—Vpe. (19 G, XGEK,G)Gy L. The two terms with a negative sign can
be thought of as subtractions to the last two tefRig. 1(b)].
These subtract the contributions of the intermediate states of
n ) the constituents whose times are equal to each other, as the
v,

The current calculated up tuth order is given by

Jf{:\f_fn Ag+2 VE | T (200 latter are exposed in the two-time free vertex functif of
=1 Eq. (26). This can be seen by using E46) and noting that,

~ . i with the help of Eq.(27), the subtraction terms can be re-
where W, is the corresponding LF bound-state wave f“”C'pIaced in Eq.26) by one-body currents:

tion satisfying

n —AB(GoK1Go)Gy ' =Gy (GoK1Go) A
Gl . T = ~, =, = u~
(GO i—El\/I)\Pn 0 @1 =—Gy 'GHV,—V,GEG, 1 — —2A4. (25)

Then with the help of Eq(19) and the WTI forA4 itis easy ~ The currentin LO is then
to see thatly is conserved.

To give a concrete example of a possible choice\pr
let us define it to be tha-particle exchange contribution in a
particle exchange model fdf. In particular, if we writeK
=K;+K,+--- whereK; is the BS one-particle exchange

J=D(AL+VAHD, (26)

where ® is the solution of the LF bound-state equation in

term, K is the BS crossed two-particle exchange, etc., then, =-1_ _
from Eq. (4), the leading ordefLO) contribution to the LF (Go "=V ®=0. @7
potential would be given by Conservation of the LO current of E(R6) follows from the
~ ~ WTI's for V{ [Eq. (19)] and the one-body vertex function
V3= (GoK1Go)Gs (22 e U9 )

A% and the equation for the bound state, E2Y).
It is interesting to compare our prescription for construct-

h -to leadi INL ibuti
the next-to leading ordeLO) contribution by ing the LO current by gauging the LO LF potenti#gs.

_R-1 (15), (19), and(24)] with the related results of Refgl6,17
V2=Go T(GoK2Go) +(GoK1GoK1Go) for the case of the usual equal-time quasipotential approach.
—(GoK1Go)Gy HGoK1G)1G, *, (23)  Using the gauging of equations method, it was shown in
Refs.[16,17] that in order to obtain a gauge invariant tran-
and so on. To obtaiV4 we simply gauge Eq22): sition current, both the quasipotential and electromagnetic
current operator should be truncated at the same order of the
VE=Go Y GoKEG) Gy 1~ AK(GoK1Go) Gy coupling constant. Thus, in Refd.6,17), the construction of
the gauge invariant approximate current involves expansions
— Gy HGoK1Go) A4+ Gy HGHK,Gg) Gy * of both the four-dimensional five-point Green function and
_ _ the quasipotential, whereas we only need the LF potential
+Go HGoK,GHYG, t. (24)  given as part of a series expansid#g. (4)]. Gauging just

5 5 this part(viz., the LF potentigl we derive the gauge invari-
The terms contributing t&,V4{'G, are illustrated in Fig. 1. ant approximate current. This is a nice but formal feature of
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our approach. A more important difference lies in. the factis the LO Green functiol; with the (unperturbeti bound-
that the boost transformation of the usual equal-time wavetate pole subtracted off. The second term in @) is just
functions is dynamical; i.e., it depends on the interactiony wave-function renormalization due to the dependenc of

[.16'1ﬂ' Qur gauge invariant LF reduct!on oﬁgrs wave func- on the total momentur®*. HereG; satisfies the inhomoge-
tions which depend only on three-dimensional momenta; -
. ; . . heous LF equation
they have kinematical boost transformations and provide
gauge invariant currents, all at the same time. It is a difficult = ===
task to construct the approximate gauge invariant currents in G1=Go+GoV1Gs. (32
terms of the covariant wave functions projected onto the hy- _ ) ) _
perplaneP(x; —X,) =0 [9,16,17. One of the ways for this to The full linear inA correction to the current matrix element
be achieved would be in a modification of our gauging preJs [19]
scription for such projected Green functions. . . B .
Finally, it is worth noting that we have not addressed the SIH=D SN D+ DPAFD+ DAY SD+ SPATD, (33
problem of dynamical three-dimensional rotation transforma-
tions inherent in the LF quasipotential approach. This probwhere
lem leads to wave functions that are not invariant under ro-
tations. For instance, in the case of two scalar particles, LF AB=AE+VE. (34)
wave functions depend on two variables—say; p /P
and (p, —xP, ) rather. than on one ro_tatlonally Invanant . first term stems from the bound-state mass correction to
modulus of the three-dimensional relative momentum. De; . ;
X S e ! the LO vertex function: that is,
spite this difficulty, the equal LF “time” approach still has an
advantage over the usual equal-time approach where the lack

of boost invariance leads to functions tifree rotationally SAK— 5M2(9Alf (35
invariant scalar combinations of the total and relative mo- 1 M2’
menta.
where[18]
A. Currents at NLO
Above, we have formally solved the problem of con- SMZ=iDAD. (36)

structing conserved LF equal-time currents up to any order in

the interaction. In this subsection we would like to apply ourThe correction to the current, given by E§3), is conserved

formalism to the case where only the LO term\bfs taken by construction, since the exact current corresponding to the

into account exactly, with all higher order contributions be-potentialV;+ A is conserved and so therefore should be the

ing included as a perturbation. part that is linear im\. Nevertheless, it will be instructive to
For this purpose, denote the LO contributionMdy V4 show this current conservation explicitly. In this way we will

(it can be the single-particle exchange potential discussesee that the first term in Eq33) is essential for current

above, or it can be defined some other yvagd the contri-  conservation.

butions making up the NLO term hi:

V=Vi+A+---. (28) B. Current conservation at NLO

Using the WTI forV{" given in Eq.(19) and the corre-
Denoting the correction to the wave functidndue toA by  sponding WTI's for the one-body currerty and for A*,
o®, the following LF equation should be satisfied: one obtains

~ _J(eG{ -G e — . -
(P+6P)=Gy(V1+A)(D+5D). (29 qﬂﬁJ”=—5M2(I)(l—21)(I)+CD(eA—Ae)(I)
oM
Treating A as a perturbation and keeping terms that are at — A g = _qn — n =1~
most linear inA, the wave function correctioa® can be —®(eG, "G, 7e) 5P~ 6D (eG, "~ G, ).

expressed agl8,19 (37

In the above expressiog=P’—P whereP andP’ are the
D, (30 total initial and final momenta, respectively; in this respect, it
should be noted that in each of the summed terms above, all
quantities standing to the right of opera®have total mo-
mentumP, while those standing to the left @ have total
momentum P’. Exploiting the bound-state equations
B=8, (31) é[l®_=®éfl=0 and making use of E¢30), the previous
P<—M equation can be written as

6P =

~p iP® [ oA
GiA+ d—&
4M?

where
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_ (&G -G . A It is straightforward to show that the LO curredit, given
P—— P+ P(eA—-Ae)D by Eq.(26), satisfies this conditiofas indeed doed; of Eq.
(20) for any n]. Here we show that exact charge conserva-

SIt=— 5SM?
Au IM?

ip IA tion holds also in the case wheié is calculated to NLO in
_q_)é’éil étlwA+_fL2(q_)_ ) 1)) perturbation theory. For this purpose, it will be sufficient to
am?\ 9P, show thatn,33#(P,P)=0 where n=P//P? is the unit
L, four-vector alongP.
+®| ABE+ P, q—)aA o|[B 0. (39 We start by using t_he WTI's foA{ andA* in Eq.(33). The
am? P, WI for Af can be written as

A further application of the bound-state equations gives ~
A{(Pk;P,p)=—[G; ]“(P.k;P,p)

_(eG; -G 'e)
D 1 1

q,034=— M2 O+ d(eA—Ae)d | G YP.k,p)
M?2 =iley————
K,
T A= —1%b TARDbR -1 .
deG; "GJAD+DPAG]G; "ed. (39 SETLP.K.p)
) +—————et+(e;t+e,)

One can see that the terms responsible for bound-state wave- Py
function renormalization drop out by themselves, whereas ~
other terms contribute zero tq,8J* only as a result of XﬂGl (P.k,p) (45
partial cancellation between each other. We will see below P, '

that the renormalization terms are important in the charge
conservation relation as they account for the charge flowingyhere we have taken the particular choipesp, and k

in the intermediate states which are accounted fak.irtJs- =k, for the relative variables. The ~derivation  of
ing Eq. (31), it is easy to show that foP?=M? (see the n,8J%(P,P)=0 for the two first terms involving/ ok, and
Appendiy dldp, is very similar to the one given above for current
~ ~ conservation; therefore, we will consider only the case of the
961" = xpx-1_. =901 last term in Eq.(45).

=-1=b_ 4 -
Gy Gr=1-1 IM?2 PIVER Any function F of the four-vectorP can be considered a

(40)  function of |P|= JP? and any three independent components
of n=P/|P|. In this case it is clear that
where the derivative of the inverse Green functiaw,

_ . = _1 2 . . . .
idG, "/dM*, also appears in the normalization condition JF(P) _o7F(|P|n)

for the bound-state wave function: =
N P, P (46
OND=1. (41)
so that
Using these results in E@40) one obtains
_AeG-B ) 99 _p L
0, 80#=— SM2D’ (eGy v L b+ (D7 eND) n“aPM_a|P|_2|P|aP2' (47)
X(DAD)—(P'A' D) (PN’ ed), (42) To determine the contribution of the last term of E4j5) to
n,8J*, we need to consider the contractions
where we have explicitly indicated with a prime those quan-
tities for which the total momentum B’ and left unprimed ~
those for which the total momentum & The Lorentz in- n, AL(P.KP,p)=—n,[G; "]*(P.k;P,p)
variance of the mass correction, E§6), then leads to cur- ~ 1
rent conservation dG; *(P.k,p)
—e——
Jpl
q,03*=0. (43)
C. Charge conservation at NLO nMA“(PvE? P.p)— _e‘?A;TI’D%E) , (48)

For a two-particle bound state, the requirement of “charge

conservation” is given by the condition ]
where e=e;+e, and the dependence gR| is found by

JH(P,P)=2(e;+e,)P~. (44)  writing P#=|P|n*. Then
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- e i aA conservation, which is a result of the cancellation between
n,®AL 6D —2e|P|D 12 [ébA+ 5 <I>—2<I>”cb, their longitudinal parts.
JP 2\ oP The perturbation theory presented in this paper, in particu-

(49 lar the expression of Eq33), could be applied, for example,
. ) to the calculation of meson cloud effects on the electromag-
which for our purpose needs to be evaluatedPd=M?.  netic form factors, which are known to be import&ht20].

Using the fact that Although a similar program for the Nambu—Jona-Lasinio
~ _ (NJL) model has been demonstrated in R&8], this should

_9G1 b i _o°Git also be done in the LF approach. In this case, first the NLO

@ IM 2 G1=~ E(I) @(ﬁM 2)2<D ' (50) potential A should be constructed to incorporate one-meson

exchange in all possible ways within the LO model. Next,
such aA should be gauged in order to derive the meson
exchange electromagnetic current operatdr etc.

The gauge invariant perturbation theory proposed in this
note is not specific to the LF approach and can, for example,

which follows from the derivation given in the Appendix,
and the normalization condition of E¢41), we obtain that

2~—1
anTAT5¢H_iqu_)A¢< d- G; 2q>> be applied to the spectator approd@t8]. The spectator po-
(dM9) tential corresponding to the example of Eg3) reads
__dA =
+eM ‘I’W@)' (51) Vi=Ka,
V2:K2+K160K1_K15dK1, (54)
=N [ Gt : . .

n,oM20——>d—2ieMPAD| © o, where &d is the product of the single-particle propagatbr
oM (aM*) and the spectator on-mass-shé&lfunction. Currents would

(520 again be given in LO by Eq26) and in NLO by Eq.(33);

however, rather than gauging the equal-time LF propagators,
— —dA one would gauge the on-mass-shell propagators in§%&é

APPENDIX

Usmg Eq. (51), the corr.espondmg expresspn for Here we derive the following three useful expressions for
n,6®AF®, Egs.(52) and(53) in Eq. (33), one obtains that the case ofP2=M?2:

n,6J#=0.
G;'Gh=1 'aé;1q>5 GiG =1 'cbcITﬁéIl
=1—1 s =1—1 —_—Q,
IV. CONCLUSIONS 1 V1 IM2 191 IM2
The equality of the three-dimensional LF expression for (A1)
the current, Eq(9), and the corresponding four-dimensional 5 B
BS expression, Eq5), has been known for a long tinjé)]. N baG[l i [ —0°G;?t
However, this result is not very practical for calculational Gi PVE b=-3 @(&Mz)zq) ®. (A2)

purposes as both the LF vertex function, defined by (Bg.
and the potential generating the LF wave function, &,
are represented by infinite series even if the underlying B
kernelK is simple. In addition, it has so far not been noticed
that between these two operators there is a direct connection ™ =
(even though they are given by sejiesamely, A#* can be Gp=Gi(P k), Gu=GCi(P.kp)lpz-nz. (A3)
obtained fromV by the procedure of gauging if the latter is Note that our bound-state wave functidnis covariant and

properly defined in terms of two-time Green functions. Adoes not depend oR?2, as discussed in RefL8]. Using this
simple and natural definition of gauging in this paper is sum- ' .

marized by Eqs(14) and(18), and makes the last statement nhotat|0n and the definition dﬁtl’ given in Eq.(31), it follows
clear. Our definition of gauging enables us to construct thé at
current operator corresponding to any term of the series of = 1
Eq. (4). In particular, we have given the explicit expression Golgb=g:! 100 IGp O

for the gauge invariant currefEgs. (26) and (24)] corre- PP P p2—Mm?2 pP2—M?2 '
sponding to the first term of E@4). This expression can be (A4)
used, for example, in studies of one-particle exchange mod-

els. Finally, we have shown how to account perturbativelyAs G,\‘,|1<I>=O, we obtain the first of the equations in Egs.
for the remainder of the terms in E@f) by explicit construc- (A1) in the limit P?=M?2; the second equation follows simi-
tion of the current at NLOEq. (33)]. Close examination larly. The last of the equations, E¢A2), results from the
shows that all terms in Eq33) are important for current following algebra:

o carry out the necessary algebra it is useful to introduce
e following notation:

Gp_
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L IGu'  IGHGy'  dGh . IGHGy'  IGRGR’ a iod |
GM ZCI): 2 - 2 =M = 2 b= 2 o= vl Gp_ﬁ GP b
oM oM M oM P | o2 aP P2—M 022
J /1 iPDOGL! o 'qaq‘)[ Gyt (I ch
=gzl 1 =1 TPz 2
PN p-m? )|, (PP-M?2 (PP=M?) gp2 |
_ 1 Gyt (PP=M?)? 582Gyt
; -1 2 2y_ M M
= —— +(P?— +
R I VL R S VS I FIVEE
1 G|\_/|1 2 [\_/|1
- +(P?-M?)——— |+ 0O(P?>-M?) )
2_ 2
(P=M?) | gm?2 (IM?)2 b2
NPTy | D (A5)
2\ (am2? )
[1] G.A. Miller and M.R. Frank, Phys. Rev. 65, 065205(2002. Rev. C61, 044003(2000.
[2] M.K. Joneset al,, Phys. Rev. Lett84, 1398(2000. [13] J.R. Cooke and G.A. Miller, Phys. Rev. &2, 054008(2000.
[3] O. Gayouet al,, Phys. Rev. Lett88, 092301(2002. [14] A.A. Logunov and A.N. Tavkhelidze, Nuovo Cimen29, 380
[4] H. Leutwyler and J. Stern, Ann. Phy@\.Y.) 112, 94 (1978. (1963.
[5] G.P. Lepage and S.J. Brodsky, Phys. Re22)2157(1980. [15] B.C. Tiburzi and G.A. Miller, Phys. Rev. b7, 054014(2003;
[6] A.N. Kvinikhidze and B. Blankleider, Phys. Rev.8D, 044003 67, 054015(2003.
(1999; 60, 044004(1999. [16] D.R. Phillips and S.J. Wallace, Few-Body Sy&4, 175
[7] F. Gross and D.O. Riska, Phys. Rev36, 1928(1987. (1998.
[8] A.N. Kvinikhidze and B. Blankleider, Phys. Rev. &5, 2963 [17] D.R. Phillips, S.J. Wallace, and N.K. Devine, Phys. ReG&:
(1997; 56, 2973(1997. 2261(1998.
[9] V.R. Garsevanishvili, A.N. Kvinikhidze, V.A. Matveev, A.N. [18] A.N. Kvinikhidze and B. Blankleider, Phys. Rev.&Y, 076003
Tavkhelidze, and R.N. Faustov, Teor. Mat. 23, 310(1975. (2003.
[10] B.C. Tiburzi and G.A. Miller, hep-ph/0205109. [19] A.N. Kvinikhidze, M.C. Birse, and B. Blankleider, Phys. Rev.
[11] S. Mandelstam, Proc. R. Soc. LondA233, 248 (1955. C 66, 045203(2002.

[12] J.H.O. Sales, T. Frederico, B.V. Carlson, and P.U. Sauer, Phy$20] G.A. Miller, Phys. Rev. (66, 032201(2002.

025021-7



