208 research outputs found

    Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis

    Get PDF
    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue’s auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation

    El papel de la investigacion accion transformadora en la construccion de paz territorial

    Get PDF
    A pesar de la amplia gama de temas de investigación sobre el conflicto armado y la construcción de paz en Colombia, poco se habla del rol que puede tener la investigación como motor de cambio en esa transición de la guerra a la paz cuando se hace con los propios actores que han formado parte de las dinámicas del conflicto. Este capítulo ofrece esta perspectiva. Para ello nos basamos en la experiencia del proyecto “Escuela, territorio y posconflicto”, trabajando con organizaciones comunitarias del sur del Tolima en el estudio de sus experiencias de construcción de paz en medio del conflicto armado

    Legitimidades en disputa: la construcción estatal en escenarios de posconflicto

    Get PDF
    Esquemáticamente, se puede plantear que gran parte de las investigaciones sobre la paz en Colombia se centran en las dinámicas de victimización y en la lógica del conflicto. En efecto, las series del Centro Nacional de Memoria Histórica parten de esta perspectiva, aun cuando han referido estrategias de resistencia local y mencionan numerosos casos de construcción de paz en medio de la guerra. La paz desde la perspectiva del conflicto, se define como un proceso de desarme, reintegración y reparación. Sin embargo, vienen emergiendo otras lecturas que enfatizan las capacidades de las comunidades locales para soportar, negociar e, incluso, oponerse a los actores armados (Salamanca y Uribe, 2019). En esta línea, la paz se propone como un proceso que implica la transformación de relaciones de poder y de conflictos que emergen una vez se silencian los fusiles (Mac Ginty, 2008, 2010; Roberts, 2011). Esta perspectiva abre espacios para concepciones que superan la llamada estatalización y securitization de la paz. De esto trata este capitul

    Different states of integrin LFA-1 aggregation are controlled through its association with tetraspanin CD9

    Full text link
    This is the author’s version of a work that was accepted for publication in Biochimica et Biophysica Acta - Mollecular Cell Research. A definitive version was subsequently published in Biochimica et Biophysica Acta - Mollecular Cell Research, 1853.10 (2015): 2464-2480 DOI: 10.1016/j.bbamcr.2015.05.018The tetraspanin CD9 has been shown to interact with different members of the β1 and β3 subfamilies of integrins, regulating through these interactions cell adhesion, migration and signaling. Based on confocal microscopy co-localization and on coimmunoprecipitation results, we report here that CD9 associates with the β2 integrin LFA-1 in different types of leukocytes including T, B and monocytic cells. This association is resistant to stringent solubilisation conditions which, together with data from chemical crosslinking, in situ Proximity Ligation Assays and pull-down experiments, suggests a primary/direct type of interaction mediated by the Large Extracellular Loop of the tetraspanin. CD9 exerts inhibitory effects on the adhesive function of LFA-1 and on LFA-1-dependent leukocyte cytotoxic activity. The mechanism responsible for this negative regulation exerted by CD9 on LFA-1 adhesion does not involve changes in the affinity state of this integrin but seems to be related to alterations in its state of aggregationThis work was supported by grant SAF2012-34561 from the Spanish «Ministerio de Economía y Competitividad-MINECO», (to C.C.). R.R.M. salary is supported by a «Profesor Ayudante» position from Departamento de Biología, Facutad de Ciencias, Universidad Autónoma de Madri

    ICAM-2 Expression Mediates a Membrane-Actin Link, Confers a Nonmetastatic Phenotype and Reflects Favorable Tumor Stage or Histology in Neuroblastoma

    Get PDF
    The actin cytoskeleton is a primary determinant of tumor cell motility and metastatic potential. Motility and metastasis are thought to be regulated, in large part, by the interaction of membrane proteins with cytoplasmic linker proteins and of these linker proteins, in turn, with actin. However, complete membrane-to-actin linkages have been difficult to identify. We used co-immunoprecipitation and competitive peptide assays to show that intercellular adhesion molecule-2 (ICAM-2)/α-actinin/actin may comprise such a linkage in neuroblastoma cells. ICAM-2 expression limited the motility of these cells and redistributed actin fibers in vitro, and suppressed development of disseminated tumors in an in vivo model of metastatic neuroblastoma. Consistent with these observations, immunohistochemical analysis demonstrated ICAM-2 expression in primary neuroblastoma tumors exhibiting features that are associated with limited metastatic disease and more favorable clinical outcome. In neuroblastoma cell lines, ICAM-2 expression did not affect AKT activation, tumorigenic potential or chemosensitivity, as has been reported for some types of transfected cells. The observed ICAM-2-mediated suppression of metastatic phenotype is a novel function for this protein, and the interaction of ICAM-2/α-actinin/actin represents the first complete membrane-linker protein-actin linkage to impact tumor cell motility in vitro and metastatic potential in an in vivo model. Current work focuses on identifying specific protein domains critical to the regulation of neuroblastoma cell motility and metastasis and on determining if these domains represent exploitable therapeutic targets

    Global peatland initiation driven by regionally asynchronous warming

    Get PDF
    Widespread establishment of peatlands since the Last Glacial Maximum represents the activation of a globally important carbon sink, but the drivers of peat initiation are unclear. The role of climate in peat initiation is particularly poorly understood. We used a general circulation model to simulate local changes in climate during the initiation of 1,097 peatlands around the world. We find that peat initiation in deglaciated landscapes in both hemispheres was driven primarily by warming growing seasons, likely through enhanced plant productivity, rather than by any increase in effective precipitation. In Western Siberia, which remained ice-free throughout the last glacial period, the initiation of the world’s largest peatland complex was globally unique in that it was triggered by an increase in effective precipitation that inhibited soil respiration and allowed wetland plant communities to establish. Peat initiation in the tropics was only weakly related to climate change, and appears to have been driven primarily by nonclimatic mechanisms such as waterlogging due to tectonic subsidence. Our findings shed light on the genesis and Holocene climate space of one of the world’s most carbon-dense ecosystem types, with implications for understanding trajectories of ecological change under changing future climates

    Epilepsy and intellectual disability linked protein Shrm4 interaction with GABA B Rs shapes inhibitory neurotransmission

    Get PDF
    Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABA B receptors (GABA B Rs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABA B R activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABA B Rs and extrasynaptic \uce-subunit-containing GABA A Rs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABA B R-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy
    corecore