1,503 research outputs found

    Secretion of Epstein-Barr Virus-encoded BARF1 oncoprotein from latently infected B cells

    Get PDF
    Epstein-Barr virus (EBV) encodes two oncogenes, LMP1(Latent Membrane Protein-1) and BARF1 (BamH1-A Reading Frame-1). LMP1 belongs to latent gene family and BARF1 is considered so far as one of early gene family. However BARF1 oncogene was expressed highly in Nasopharyngeal (NPC) and gastric (GC) carcinoma as a type II latency, and in EBV-positive Akata cell and primary epithelial cell infected in vitro by EBV as type I latency. Its expression was also reported in Burkitt's lymphoma's biopsy frequent in Malawi in Africa as well as in nasal NK/T-cell lymphoma. We recently observed a massive secretion of BARF1 protein in serum and saliva of NPC patients. NPC-derived c666-1 epithelial cells also expressed and secreted BARF1 protein without other lytic genes expression. We asked whether this oncogene belongs to latent gene family. To investigate, we examined its transcriptional and translational expression in IB4 and Akata B cells where both cell lines belong to latent cell family. Transcriptional expression was analyzed by RT-PCR. As BARF1 protein is one of secreted proteins, its translational expression was analyzed by immunoblot after concentration of culture medium. Secreted BARF1 protein was futher purified by concanavalin A affinity column. BARF1 was transcribed in both EBV-positive AKATA and IB4 cells, and BARF1 protein was secreted from these latently infected human B cells. Its secretion does not depend EBV genome form in infected cells. Both episomal and integrated form of EBV genome were capable of expressing BARF1 gene. These results suggests that BARF1 is expressed in latent stage and increases its expression during lytic stage

    Unsteady-state exergy analysis on two types of building envelopes under time-varying boundary condition

    Get PDF
    In the built environment, the thermal exergy behavior is very sensitive to the change of environmental temperature, because the temperature difference between the reservoir and a system of interest is small. Moreover, the transient characteristics become very important for the building envelope, which is primarily affected by the environmental temperature changes and has a relatively large heat capacity. Most of the exergy analyses have been performed under steady-state assumption. However, it may miss some important details of the transient process. Thus, when the transient transfer process becomes important, the unsteady-state exergy analysis should be conducted. In this study, we propose complete energy, entropy, and exergy equations in their partial differential forms. By solving them numerically, we examined the transient exergy process inside the building envelope composed of concrete and insulation layers under time-varying boundary condition. Using this new methodology, we can improve the temporal and spatial resolution of the exergy analysis and thus provide more complete information about exergetic behavior

    High-Q coupled resonances on a PhC waveguide using a tapered nanofiber with high coupling efficiency

    Full text link
    We experimentally demonstrate high-Q cavity formation at an arbitrary position on a silicon photonic crystal waveguide by bringing a tapered nanofiber into contact with the surface of the slab. An ultrahigh Q of 5.1 x 10^5 is obtained with a coupling efficiency of 39%, whose resonant wavelength can be finely tuned by 27 pm by adjusting the contact length of the nanofiber. We also demonstrate an extremely high coupling efficiency of 99.6% with a loaded Q of 6.1 x 10^3. In addition, we show that we can obtain an all-pass filter type coupled resonator system, which has the potential to be used for slow light generation.Comment: 8 pages, 7 figures. The following article has been submitted to Optics Express. After it is published, it will be found at https://www.osapublishing.org/oe/home.cf

    Comparison of Lattice Boltzmann Method and Finite Volume Method with Large Eddy Simulation in Isothermal Room Flow

    Get PDF
    Lattice Boltzmann method (LBM), as a new computational fluid simulation method, has aroused widespread attention in recent decades within engineering practice. LBM with large eddy simulation (LBM-LES) model is commonly used in predicting high Reynolds flow, and is considered to have a prediction accuracy similar to traditional finite volume method (FVMLES). Nonetheless, a systematic discussion on the accuracy of LBM-LES, and its consistency with FVM-LES, in indoor turbulent flow situations, is still insufficient. In this study, simulations of an indoor isothermal forced convection benchmark case (from IEA Annex 20) are implemented by using both LBM-LES and FVM-LES, with the aim of comparing the accuracies of LBM-LES and FVM-LES, in indoor turbulent flow situations. A comparison of their relative computation speeds, and parallel computation performances, is also implemented. The results show that LBM-LES can achieve the same level of accuracy as FVM-LES, in indoor turbulent flow situations; however, more refined meshes are required. Compared with FVMLES, half size grids are required for LBM-LES to approach similar levels of accuracy, meaning that the meshes of LBM-LES are approximately eight times as large as FVM-LES. The computation speeds of both LBM-LES and FVM-LES scale well, with the increase in the number of computation cores in one node. Their computation speeds (with the same accuracy) approach a similar level; however, the parallel computation speed of the LBM-LES speed can be larger than FVM, owing to its superior parallel speedup performance

    Autoantibodies to low-density-lipoprotein-receptor-related protein 2 (LRP2) in systemic autoimmune diseases

    Get PDF
    We previously reported that autoantibodies (autoAbs) to the main epitope on CD69 reacted to its homologous amino acid sequence in low-density-lipoprotein-receptor-related protein 2 (LPR2), a multiligand receptor for protein reabsorption. In this study, we have investigated the prevalence, autoepitope distribution, and clinical significance of the autoAbs to LRP2 in patients with systemic autoimmune diseases. Using six recombinant proteins (F2–F7) for LRP2 and one for CD69, we detected autoAbs to LRP2 in sera of patients with rheumatoid arthritis (RA), systemic lupus erythematosus, Behçet's disease, systemic sclerosis, and osteoarthritis and then mapped autoepitopes by Western blotting. The autoAbs to LRP2 were detected in 87% of the patients with rheumatoid arthritis, 40% of those with systemic lupus erythematosus, 35% of those with systemic sclerosis, 15% of those with osteoarthritis, and 3% of those with Behçet's disease. Multiple epitopes on LRP2 were recognized by most of the anti-LRP2(+ )serum samples. All of the tested anti-CD69 autoAb(+ )samples reacted to LRP2-F3 containing the homologous sequence to the main epitope of CD69; however, only 38% of the anti-LRP2-F3(+ )samples reacted to CD69. Clinically, the existence of the autoAbs to LRP2-F4, -F5, and -F6 correlated with the presence of proteinuria in RA. This study revealed that LRP2 is a major autoantigen in RA. The autoAbs to LRP2 are probably produced by the antigen-driven mechanism and the autoimmunity to LRP2 may spread to include CD69. The anti-LRP2 autoAbs may play pathological roles by inhibiting the reabsorbing function of LRP2
    • …
    corecore