935 research outputs found

    Evaluation of medicinal potential and antibacterial activity of selected plants against Streptococcus mutans

    Get PDF
    Article Details: Received: 2020-06-15 | Accepted: 2020-09-28 | Available online: 2021-03-31 https://doi.org/10.15414/afz.2021.24.01.9-15The aim of the study is to screen the bioactive compounds (saponin, tannin, phenolic compounds, terpenoid & steroid) present in selected ethnomedicinal plants, Terminalia bellirica (fruits), Smilax zeylanica (leaves) and Dioscorea oppositifolia (fruits) from Odisha state, India. The single formulation was prepared using the selected plants parts in the ratio 1 : 6 : 3 respectively for quantitative analysis of tannin & total phenol, antioxidant activity and analysis of MIC (Minimum Inhibitory Concentration) against Streptococcus mutans causing bacteria of tooth decay. Results revealed that selected plant parts are rich source of bioactive compounds like tannin, phenolic compounds and saponin. The quantitative analysis of secondary metabolites showed highest concentration of tannin. It was noted that antioxidant activity is highest in methanol extract as compared to aqueous and acetone. MIC analysis also revealed that formulated powder had excellent antibacterial activity against S. mutans and it was observed the lowest values (450 µg ml-1) showed aqueous & methanol followed by acetone. The herbal formulation might be used to formulate new herbal products against tooth decay in near future.Keywords: antibacterial activity, antioxidant activity, ethnomedicinal plants, secondary metabolites, tooth decay ReferencesANDERSON, T. (2004). Dental treatment in medieval England. British Dental Journal, 197(7), 419–425.DESHMUKH, M.A. and THENG, M.A. (2018). Phytochemical screening, quantitative analysis of primary secondary metabolites of Acacia aeabica bark. International Journal of Current Pharmaceutical Research, 10(2), 35–37.DHANYA, S.V.S., et al. (2018). Preliminary phytochemical activity of Smilax zeylanica L. (Smilaceaceae). Journal of Drug Delivery and Therapeutics, 8(4), 237–243.FERRAZ, E.G. et al. (2012). The oral manifestations of celiac disease: information for the pediatric dentist. Pediatric Dentistry, 34(7), 485–488.FERRAZZANO, G.F. et al. (2011). Plant polyphenols and their anti-cariogenic properties: a review. Molecules, 16(2), 1486–1507.GIUCA, M.R. et al. (2010). Oral signs in the diagnosis of celiac disease: review of the literature. Minerva Stomatologica, 59(1– 2), 33–43.GOUDA, S. et al. (2013). Free radical scavenging potential of extracts of Gracilaria verrucosa (L) (Harvey). An economically important seaweed from Chilika lake, India. Journal of Pharm Pharm Sciences, 6, 707–710.GUPTA, V. et al. (2015). Folklore herbal remedies used in dental care in Northern India and their pharmacological potential. American Journal of Ethnomedicine, 2(6), 365–72.HAINES, H.H. (1922). The Botany of Bihar and Orissa. Adlard & Son & West Newman, UK.HARBORNE, J.B. (1973). Phytochemicals methods. London. Chapman and Hall Ltd, 49–188.HAZRA, K. (2019). Phytochemical investigation of Terminalia bellirica fruit inside. Asian Journal of Pharmaceutical and Clinical Research, 12(8), 191–194.JYOTHI, T., et al. (2012). Phytochemical evaluation of Smilax zeylanica Linn. Soushrutam, 1(1), 1–14.KANDUTI, D. (2016). Fluoride: a review of use and effects on health. Mater Sociomed, 28, 133–137.MAST, P. et al. (2013). Understanding MIH: definition, epidemiology, differential diagnosis and new treatment guidelines. European Journal of Paediatrics Dent, 14(3), 204–8.MEJÁRE, I. and MJÖR, I.A. (2003). Dental caries: The Disease and its Clinical Management. Wiley-Blackwell.MOORE, W.J. (1983). The role of sugar in the aetiology of dental caries. 1. Sugar and the antiquity of dental caries. Journal of Dentist,11(3), 189–190.NATIONS, M.K. and NUTO, S.D.A.S. (2002). Tooth worms: poverty tattoos and dental care conflicts in Northeast Brazil. Social Sciences & Medicines, 54(2), 229–244.NEVILLE, B.W. and Day, T.A. (2002). Oral cancer and precancerous lesions. CA: A Cancer Journal for Clinicians, 52(4), 195–215.RAAMAN, N. (2006). Qualitative phytochemical screening and Phytochemical Techniques. New Delhi Publishing.RAI, A. et al. (2010). Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings.  Journal of Materials Chemistry, 20(32), 6789–6798.SAXENA, H.O. and BRAHMAM, M. (1994). The flora of Orissa. Regional Research Laboratory; Orissa Forest Development Corporation, pp. 437–439.SHARMA, D. et al. (2018). Role of plant extract in the inhibition of dental caries. International Journal of Life Science & Pharma Research, 8(2), 9–23.SHEKARCHIZADEH, H. et al. (2013). Oral health of drugs abusers: a review of health effects and care. Iranian Journal of Public Health, 42(9), 929–940.SMITH, R.E. et al. (2002). Maternal risk indicators for childhood caries in an inner city population.  Community Dentistry and Oral Epidemiology, 30(3), 176–181.SOFOWORA, A. (1993). Medicinal plants and traditional medicine in Africa. Spectrum Books limited. Ibadan.TREASE, G.E. and EVANS, W.C. (1989). Pharmacognosy. WB Scanders Company Ltd., 89–300.WONG, C.Y. et al. (2013). Experimental and computational modeling of solid particle erosion in a pipe annular cavity. Wear, 303(1–2), 109–129.YOUNG, D.A. et al. (2009). Curing the silent epidemic: caries management in the 21st century and beyond. Ontario Dentist, 86(2), 681–685

    Efficacy of montelukast in the management of COVID-19: double blind randomized placebo controlled trial

    Get PDF
    Background: Objective of the study was to determine the efficacy of montelukast in reducing the severity of COVID-19 symptoms using a double blinded randomized controlled trial.Methods: Parallel, double-blinded randomized controlled trial (RCT) with placebo as comparison to montelukast. All patients above the age of 14 years both males and females, admitted with a diagnosis of mild or moderate COVID-19 (on the basis of a positive reverse transcriptase polymerase chain reaction (RT-PCR) report) at our facility during the study period from 01 September 2020-31 January 2021) and excluding those having adverse reaction to montelukast or those not willing to participate, and pregnant and lactating females. Patients in the intervention arm were given tablet montelukast 10 mg OD HS from the day of admission for 10 days. The patients in the placebo group were given an identical appearing placebo at bedtime for 10 days from the day of admission. The rest of the treatment was given as per the standard operating procedure (SOP) of the institute with minor adjustments as per the treating team’s judgement. Primary outcome was progression of the disease to severe grade and secondary outcomes were discharge on or before day 10 from admission, admission to ICU, need for mechanical ventilation and in-hospital mortality.Results: A total of 94 patients were enrolled for the study. 90 patients, 45 in each arm were included in the final analysis. The baseline characteristics of the two arms including age, sex, comorbidities, severity at admission and treatment given apart from montelukast or placebo, were comparable with respect to these variables. This study did not find any improvement in primary outcome of progression to severe disease and secondary outcomes of intensive care unit (ICU) admission, mortality or need of mechanical ventilation, discharge on or by day 10 with the use of montelukast as compared to placebo in mild to moderate cases of COVID-19.Conclusions: There was no difference in primary or secondary outcomes with the use of Montelukast compared to placebo

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    The pseudorapidity (eta) and transverse-momentum (p(T)) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy root s = 13 TeV. The pseudorapidity distribution in vertical bar eta vertical bar <1.8 is reported for inelastic events and for events with at least one charged particle in vertical bar eta vertical bar <1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar <0.5 is 5.31 +/- 0.18 and 6.46 +/- 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 <p(T) <20 GeV/c and vertical bar eta vertical bar <0.8 for events with at least one charged particle in vertical bar eta vertical bar <1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
    corecore