90 research outputs found
The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation
We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation
since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with
spectroscopic redshifts drawn from the XMM Cluster Survey first data release
(XCS-DR1). This is the first study spanning this redshift range using a single,
large, homogeneous cluster sample. Using an orthogonal regression technique, we
find no evidence for evolution in the slope or intrinsic scatter of the
relation since z~1.5, finding both to be consistent with previous measurements
at z~0.1. However, the normalisation is seen to evolve negatively with respect
to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09}
(T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero
evolution case. We see milder, but still negative, evolution with respect to
self-similar when using a bisector regression technique. We compare our results
to numerical simulations, where we fit simulated cluster samples using the same
methods used on the XCS data. Our data favour models in which the majority of
the excess entropy required to explain the slope of the L_X-T relation is
injected at high redshift. Simulations in which AGN feedback is implemented
using prescriptions from current semi-analytic galaxy formation models predict
positive evolution of the normalisation, and differ from our data at more than
5 sigma. This suggests that more efficient feedback at high redshift may be
needed in these models.Comment: Accepted for publication in MNRAS; 12 pages, 6 figures; added
references to match published versio
Human behaviour can trigger large carnivore attacks in developed countries
The media and scientific literature are increasingly reporting an escalation of large carnivore attacks on humans in North America and Europe. Although rare compared to human fatalities by other wildlife, the media often overplay large carnivore attacks on humans, causing increased fear and negative attitudes towards coexisting with and conserving these species. Although large carnivore populations are generally increasing in developed countries, increased numbers are not solely responsible for the observed rise in the number of attacks by large carnivores. Here we show that an increasing number of people are involved in outdoor activities and, when doing so, some people engage in risk-enhancing behaviour that can increase the probability of a risky encounter and a potential attack. About half of the well-documented reported attacks have involved risk-enhancing human behaviours, the most common of which is leaving children unattended. Our study provides unique insight into the causes, and as a result the prevention, of large carnivore attacks on people. Prevention and information that can encourage appropriate human behaviour when sharing the landscape with large carnivores are of paramount importance to reduce both potentially fatal human-carnivore encounters and their consequences to large carnivores.Peer reviewe
Populations behind the source-subtracted cosmic infrared background anisotropies
While the upcoming telescopes will reveal correspondingly fainter, more
distant galaxies, a question will persist: what more is there that these
telescopes cannot see? One answer is the source-subtracted Cosmic Infrared
Background (CIB). The CIB is comprised of the collective light from all sources
remaining after known, resolved sources are accounted for. Ever-more-sensitive
surveys will identify the brightest of these, allowing them to be removed, and
- like peeling layers off an onion - reveal deeper layers of the CIB. In this
way it is possible to measure the contributions from populations not accessible
to direct telescopic observation. Measurement of fluctuations in the
source-subtracted CIB, i.e., the spatial power spectrum of the CIB after
subtracting resolved sources, provides a robust means of characterizing its
faint, and potentially new, populations. Studies over the past 15 years have
revealed source-subtracted CIB fluctuations on scales out to ~100' which cannot
be explained by extrapolating from known galaxy populations. Moreover, they
appear highly coherent with the unresolved Cosmic X-ray Background, hinting at
a significant population of accreting black holes among the CIB sources.
Characterizing the source-subtracted CIB with high accuracy, and thereby
constraining the nature of the new populations, is feasible with upcoming
instruments and would produce critically important cosmological information in
the next decade. New coextensive deep and wide-area near-infrared, X-ray, and
microwave surveys will bring decisive opportunities to examine, with high
fidelity, the spatial spectrum and origin of the CIB fluctuations and their
cross-correlations with cosmic microwave and X-ray backgrounds, and determine
the formation epochs and the nature of the new sources (stellar nucleosynthetic
or accreting black holes).Comment: Science whitepaper submitted to the Astro2020 Decadal Surve
Imprint of DES superstructures on the cosmic microwave background
Small temperature anisotropies in the cosmic microwave background (CMB) can be sourced by density perturbations via the late-time integrated Sachs-Wolfe (ISW) effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey (DES) in a different footprint, and using a different superstructure finding strategy. We identified 52 large voids and 102 superclusters at redshifts 0.2 < z < 0.65. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with DeltaTf ≈ -5.0 ± 3.7 muK and a hot imprint of superclusters DeltaTf ≈ 5.1 ± 3.2 muK; this is ˜1.2sigma higher than the expected |DeltaTf| ≈ 0.6 muK imprint of such superstructures in Lambda cold dark matter (LambdaCDM). If we instead use an a posteriori selected filter size (R/Rv = 0.6), we can find a temperature decrement as large as DeltaTf ≈ -9.8 ± 4.7 muK for voids, which is ˜2sigma above LambdaCDM expectations and is comparable to previous measurements made using Sloan Digital Sky Survey superstructure data
Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts
We present a detailed overview of the cosmological surveys that we aim to carry out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5 000 deg2; a wide and deep continuum galaxy and HI intensity mapping (IM) survey over 20 000 deg2 from to 3; and a deep, high-redshift HI IM survey over 100 deg2 from to 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to . These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical and near-infrared (NIR) surveys like Euclid, LSST, and WFIRST leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1
The XMM cluster survey: exploring scaling relations and completeness of the dark energy survey year 3 redMaPPer cluster catalogue
We cross-match and compare characteristics of galaxy clusters identified in observations from two sky surveys using two completely different techniques. One sample is optically selected from the analysis of 3 years of Dark Energy Survey observations using the redMaPPer cluster detection algorithm. The second is X-ray selected from XMM observations analysed by the XMM Cluster Survey. The samples comprise a total area of 57.4 deg2, bounded by the area of four contiguous XMM survey regions that overlap the DES footprint. We find that the X-ray-selected sample is fully matched with entries in the redMaPPer catalogue, above λ > 20 and within 0.1 <0.9. Conversely, only 38 per cent of the redMaPPer catalogue is matched to an X-ray extended source. Next, using 120 optically clusters and 184 X-ray-selected clusters, we investigate the form of the X-ray luminosity-temperature (LX -TX ), luminosity-richness (LX -λ), and temperature-richness (TX -λ) scaling relations. We find that the fitted forms of the LX -TX relations are consistent between the two selection methods and also with other studies in the literature. However, we find tentative evidence for a steepening of the slope of the relation for low richness systems in the X-ray-selected sample. When considering the scaling of richness with X-ray properties, we again find consistency in the relations (i.e. LX -λ and TX -λ) between the optical and X-ray-selected samples. This is contrary to previous similar works that find a significant increase in the scatter of the luminosity scaling relation for X-ray-selected samples compared to optically selected samples
Dark Energy Surveyed Year 1 results: calibration of cluster mis-centring in the redMaPPer catalogues
The centre determination of a galaxy cluster from an optical cluster finding algorithm can be offset from theoretical prescriptions or N-body definitions of its host halo centre. These offsets impact the recovered cluster statistics, affecting both richness measurements and the weak lensing shear profile around the clusters. This paper models the centring performance of the redMaPPer cluster finding algorithm using archival X-ray observations of redMaPPer selected clusters. Assuming the X-ray emission peaks as the fiducial halo centres, and through analysing their offsets to the redMaPPer centres, we find that ∼75 ± 8 per cent of the redMaPPer clusters are well centred and the mis-centred offset follows a Gamma distribution in normalized, projected distance. These mis-centring offsets cause a systematic underestimation of cluster richness relative to the well-centred clusters, for which we propose a descriptive model. Our results enable the DES Y1 cluster cosmology analysis by characterizing the necessary corrections to both the weak lensing and richness abundance functions of the DES Y1 redMaPPer cluster catalogue
Mass variance from archival X-ray properties of dark energy survey year-1 galaxy clusters
For abstract see published article
Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters
We introduce a galaxy cluster mass observable, μ⋆, based on the stellar masses of cluster members, and we present results for the Dark Energy Survey (DES) Year 1 (Y1) observations. Stellar masses are computed using a Bayesian model averaging method, and are validated for DES data using simulations and COSMOS data. We show that μ⋆ works as a promising mass proxy by comparing our predictions to X-ray measurements. We measure the X-ray temperature–μ_{⋆} relation for a total of 129 clusters matched between the wide-field DES Y1 redMaPPer catalogue and Chandra and XMM archival observations, spanning the redshift range 0.1 < z < 0.7. For a scaling relation that is linear in logarithmic space, we find a slope of α = 0.488 ± 0.043 and a scatter in the X-ray temperature at fixed μ_{*} of σ1nT_{x}|μ_{*} = 0.266_{-0.020}^{+0.019} for the joint sample. By using the halo mass scaling relations of the X-ray temperature from the Weighing the Giants program, we further derive the μ⋆-conditioned scatter in mass, finding σ1nM|μ_{*} = 0.26_{-0.10}^{+0.15}. These results are competitive with well-established cluster mass proxies used for cosmological analyses, showing that μ_{⋆} can be used as a reliable and physically motivated mass proxy to derive cosmological constraints
Brown bear attacks on humans : a worldwide perspective
The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.Peer reviewe
- …