156 research outputs found

    Consensuability Conditions of Multi Agent Systems with Varying Interconnection Topology and Different Kinds of Node Dynamics

    Get PDF
    Many systems in nature and of practical interest can be modeled as large collections of interacting subsystems. Such systems are referred as "Multi Agent Systems" (briefly MASs) and some examples include electrical power distribution networks (P. Kundur, 1994), communication (F. Paganini, 2001), and collections of vehicles traveling in formation (J.K. Hedrick et al., 1990). Several practical issues concern the design of decentralized controllers and the stability analysis ofMASs in the presence of uncertainties in the subsystem interconnection topology (i.e. due in practical applications to failures of transmission lines). The analysis and control of collections of interconnected systems have been widely studied in the literature. Early work on stability analysis and decentralized control of large-scale interconnected systems is found in (D. Limebeer & Y.S. Hung, 1983; A. Michel & R. Miller, 1977; P.J. Moylan & D.J. Hill, 1978; Siljak, 1978; J.C. Willems, 1976). Some of the more widely notable stability criteria are based on the passivity conditions (M. Vidyasagar, 1977) and on the well-known notion of connective stability introduced in (Siljak, 1978). More recently, MASs have appeared broadly in several applications including formation flight, sensor networks, swarms, collective behavior of flocks (Savkin, 2004; C.C. Cheaha et al., 2009; W. Ren, 2009) motivating the recent significative attention of the scientific community to distributed control and consensus problems (i.e. (R.O. Saber & R. Murray, 2004; Z. Lin et al., 2004; V. Blondel et al., 2005; J. N. Tsitsiklis et al., 1986)). One common feature of the consensus algorithm is to allow every agent automatically converge to a common consensus state using only local information received from its neighboring agents. "Consensusability" of MASs is a fundamental problem concerning with the existence conditions of the consensus state and it is of great importance in both theoretical and practical features of cooperative protocol (i.e. flocking, rendezvous problem, robot coordination). Results about consensuability of MASs are related to first and second order systems and are based on the assumption of jointly-connected interaction graphs (i.e. in (R.O. Saber & R. Murray, 2004; J. N. Tsitsiklis et al., 1986)). Extension to more general linear MASs whose agents are described by LTI (Linear Time Invariant) systems can be found in (Tuna, 2008) where the closed-loop MASs were shown to be asymptotic consensus stable if the topology had a spanning tree. In (L. Scardovi & R. Sepulchre, 2009) it is investigated the synchronization of a Consensuability Conditions of Multi Agent Systems with Varying Interconnection Topology and Different Kinds of Node Dynamics 18 network of identical linear state-space models under a possibly time-varying and directed interconnection structure. Many investigations are carried out when the dynamic structure is fixed and the communication topology is time varying (i.e. in (R.O. Saber & R. Murray, 2004; W. Ren & R. W. Beard, 2005; Ya Zhanga & Yu-Ping Tian, 2009)). One of main appealing field of research is the investigation of the MASs consensusability under both the dynamic agent structure and communication topology variations. In particular, it is worth analyzing the joint impact of the agent dynamic and the communication topology on the MASs consensusability. The aim of the chapter is to give consensusability conditions of LTI MASs as function of the agent dynamic structure, communication topology and coupling strength parameters. The theoretical results are derived by transferring the consensusability problem into the robust stability analysis of LTI-MASs. Differently from the existing works, here the consensuability conditions are given in terms of the adjacency matrix rather than Laplacian matrix.Moreover, it is shown that the interplay among consensusability, node dynamic and topology must be taken into account for MASs stabilization: specifically, consensuability of MASs is assessed for all topologies, dynamic and coupling strength satisfying a pre-specified bound. From the practical point of view the consensuability conditions can be used for both the analysis and planning of MASs protocols to guarantee robust stability for a wide range of possible interconnection topologies, coupling strength and node dynamics. Also, the number of subsystems affecting the overall system stability is taken into account as it is analyzed the robustness of multi agent systems if the number of subsystems changes. Finally, simulation examples are given to illustrate the theoretical analysis. 2

    Circulating MicroRNAs in Elderly Type 2 Diabetic Patients

    Get PDF
    The circulating microRNAs (miRNAs) associated with type 2 diabetes (T2D) in elderly patients are still being defined. To identify novel miRNA biomarker candidates for monitoring responses to sitagliptin in such patients, we prospectively studied 40 T2D patients (age > 65) with HbA1c levels of 7.5–9.0% on metformin. After collection of baseline blood samples (t0), the dipeptidyl peptidase-IV (DPP-IV) inhibitor (DPP-IVi) sitagliptin was added to the metformin regimen, and patients were followed for 15 months. Patients with HbA1c0.5% after 3 and 15 months of therapy were classified as “responders” (group R, n = 34); all others were classified as “nonresponders” (group NR, n = 6). Circulating miRNA profiling was performed on plasma collected in each group before and after 15 months of therapy (t0 and t15). Intra- and intergroup comparison of miRNA profiles pinpointed three miRNAs that correlated with responses to sitagliptin: miR-378, which is a candidate biomarker of resistance to this DPP-IVi, and miR-126-3p and miR-223, which are associated with positive responses to the drug. The translational implications are as immediate as evident, with the possibility to develop noninvasive diagnostic tools to predict drug response and development of chronic complications

    Creative connectivity project - A network based approach to understand correlations between interdisciplinary group dynamics and creative performance

    Get PDF
    Creativity, technology and innovation are fundamental driving forces that often trigger behavioural and cultural changes in our societies. Several studies on creative collaborations emphasise the interconnection between the creation of innovation and interdisciplinarity. Studying the interdisciplinary processes through which innovation is generated is thus of fundamental importance. The Creative Connectivity project investigates the links between group dynamics and interdisciplinary creative processes in the attempt to identify the emergence of meaningful behavioural patterns. Taking the Innovation Design Engineering (IDE) programme at the Royal College of Art as a case study, the research addresses the need to develop a more rigorous understanding of the creation of innovation fostered by diversity, a risk-taking culture and acceptance of failure. A novel approach combining data science and network theory has been developed to monitor, quantify and analyse specific dynamics of interdisciplinary groups of students at the IDE programme. The focus was to investigate the network contribution to the performance of a team in an environment that is naturally interdisciplinary by using data respectively from a bespoke developed web application and a conversation activity monitoring system. Initial findings have shown the potential of this approach to unveiling the hidden mechanisms behind creativity and the production of innovation through interdisciplinary approaches. The results of this research could be of interest for universities, research centres, start-ups incubators, and policymakers who want to foster creativity and trigger innovative processes

    A framework for self-enforced optimal interaction between connected vehicles

    Get PDF
    This paper proposes a decision-making framework for Connected Autonomous Vehicle interactions. It provides and justifies algorithms for strategic selection of control references for cruising, platooning and overtaking. The algorithm is based on the trade-off between energy consumption and time. The consequent cooperation opportunities originating from agent heterogeneity are captured by a game-theoretic cooperative-competitive solution concept to provide a computationally feasible, self-enforced, cooperative traffic management framework

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore