889 research outputs found
Are probabilities overweighted or underweighted when rare outcomes are experienced (rarely)?
When making decisions involving risky outcomes on the basis of verbal descriptions of the outcomes and their associated probabilities, people behave as if they overweight small probabilities. In contrast, when the same outcomes are instead experienced in a series of samples, people behave as if they underweight small probabilities. We present two experiments showing that the existing explanations of the underweighting observed in decisions from experience are not sufficient to account for the effect. Underweighting was observed when participants experienced representative samples of events, so it cannot be attributed to undersampling of the small probabilities. In addition, earlier samples predicted decisions just as well as later samples did, so underweighting cannot be attributed to recency weighting. Finally, frequency judgments were accurate, so underweighting cannot be attributed to judgment error. Furthermore, we show that the underweighting of small probabilities is also reflected in the best-fitting parameter values obtained when prospect theory, the dominant model of risky choice, is applied to the data
National survey of the prevalence, incidence, primary care burden, and treatment of heart failure in Scotland
Objective: To examine the epidemiology, primary care burden, and treatment of heart failure in Scotland, UK.
Design: Cross sectional data from primary care practices participating in the Scottish continuous morbidity recording scheme between 1 April 1999 and 31 March 2000.
Setting: 53 primary care practices (307 741 patients).
Subjects: 2186 adult patients with heart failure.
Results: The prevalence of heart failure in Scotland was 7.1 in 1000, increasing with age to 90.1 in 1000 among patients 85 years. The incidence of heart failure was 2.0 in 1000, increasing with age to 22.4 in 1000 among patients 85 years. For older patients, consultation rates for heart failure equalled or exceeded those for angina and hypertension. Respiratory tract infection was the most common co-morbidity leading to consultation. Among men, 23% were prescribed a ß blocker, 11% spironolactone, and 46% an angiotensin converting enzyme inhibitor. The corresponding figures for women were 20% (p = 0.29 versus men), 7% (p = 0.02), and 34% (p < 0.001). Among patients < 75 years 26% were prescribed a β blocker, 11% spironolactone, and 50% an angiotensin converting enzyme inhibitor. The corresponding figures for patients 75 years were 19% (p = 0.04 versus patients < 75), 7% (p = 0.04), and 33% (p < 0.001).
Conclusions: Heart failure is a common condition, especially with advancing age. In the elderly, the community burden of heart failure is at least as great as that of angina or hypertension. The high rate of concomitant respiratory tract infection emphasises the need for strategies to immunise patients with heart failure against influenza and pneumococcal infection. Drugs proven to improve survival in heart failure are used less frequently for elderly patients and women
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
An estimate of the flavour singlet contributions to the hyperfine splitting in charmonium
We explore the splitting between flavour singlet and non-singlet mesons in
charmonium. This has implications for the hyperfine splitting in charmonium
Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD
A detailed study is made of four dimensional SU(2) gauge theory with static
adjoint ``quarks'' in the context of string breaking. A tadpole-improved action
is used to do simulations on lattices with coarse spatial spacings ,
allowing the static potential to be probed at large separations at a
dramatically reduced computational cost. Highly anisotropic lattices are used,
with fine temporal spacings , in order to assess the behavior of the
time-dependent effective potentials. The lattice spacings are determined from
the potentials for quarks in the fundamental representation. Simulations of the
Wilson loop in the adjoint representation are done, and the energies of
magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are
calculated, which set the energy scale for string breaking. Correlators of
gauge-fixed static quark propagators, without a connecting string of spatial
links, are analyzed. Correlation functions of gluelump pairs are also
considered; similar correlators have recently been proposed for observing
string breaking in full QCD and other models. A thorough discussion of the
relevance of Wilson loops over other operators for studies of string breaking
is presented, using the simulation results presented here to support a number
of new arguments.Comment: 22 pages, 14 figure
Primeval Corrections to the CMB Anisotropies
We show that deviations of the quantum state of the inflaton from the thermal
vacuum of inflation may leave an imprint in the CMB anisotropies. The quantum
dynamics of the inflaton in such a state produces corrections to the
inflationary fluctuations, which may be observable. Because these effects
originate from IR physics below the Planck scale, they will dominate over any
trans-Planckian imprints in any theory which obeys decoupling. Inflation sweeps
away these initial deviations and forces its quantum state closer to the
thermal vacuum. We view this as the quantum version of the cosmic no-hair
theorem. Such imprints in the CMB may be a useful, independent test of the
duration of inflation, or of significant features in the inflaton potential
about 60 e-folds before inflation ended, instead of an unlikely discovery of
the signatures of quantum gravity. The absence of any such substructure would
suggest that inflation lasted uninterrupted much longer than
e-folds.Comment: 17 pages, latex, no figures; v3: added references and comments, final
version to appear in Phys. Rev.
Structure of Fat Jets at the Tevatron and Beyond
Boosted resonances is a highly probable and enthusiastic scenario in any
process probing the electroweak scale. Such objects when decaying into jets can
easily blend with the cornucopia of jets from hard relative light QCD states.
We review jet observables and algorithms that can contribute to the
identification of highly boosted heavy jets and the possible searches that can
make use of such substructure information. We also review previous studies by
CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era"
issue of The European Physical Journal C, we invite comments regarding
contents of the review; v2 added references and institutional preprint
number
DC Josephson Effect in SNS Junctions of Anisotropic Superconductors
A formula for the Josephson current between two superconductors with
anisotropic pairing symmetries is derived based on the mean-field theory of
superconductivity. Zero-energy states formed at the junction interfaces is one
of basic phenomena in anisotropic superconductor junctions. In the obtained
formula, effects of the zero-energy states on the Josephson current are taken
into account through the Andreev reflection coefficients of a quasiparticle. In
low temperature regimes, the formula can describe an anomaly in the Josephson
current which is a direct consequence of the exsitence of zero-energy states.
It is possible to apply the formula to junctions consist of superconductors
with spin-singlet Cooper pairs and those with spin-triplet Cooper pairs
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Co-culture of mechanically injured cartilage with joint capsule tissue alters chondrocyte expression patterns and increases ADAMTS5 production
We studied changes in chondrocyte gene expression, aggrecan degradation, and aggrecanase production and activity in normal and mechanically injured cartilage co-cultured with joint capsule tissue. Chondrocyte expression of 21 genes was measured at 1, 2, 4, 6, 12, and 24 h after treatment; clustering analysis enabled identification of co-expression profiles. Aggrecan fragments retained in cartilage and released to medium and loss of cartilage sGAG were quantified. Increased expression of MMP-13 and ADAMTS4 clustered with effects of co-culture, while increased expression of ADAMTS5, MMP-3, TGF-β, c-fos, c-jun clustered with cartilage injury. ADAMTS5 protein within cartilage (immunohistochemistry) increased following injury and with co-culture. Cartilage sGAG decreased over 16-days, most severely following injury plus co-culture. Cartilage aggrecan was cleaved at aggrecanase sites in the interglobular and C-terminal domains, resulting in loss of the G3 domain, especially after injury plus co-culture. Together, these results support the hypothesis that interactions between injured cartilage and other joint tissues are important in matrix catabolism after joint injury
- …
