39 research outputs found

    ANÁLISE TEÓRICO-EXPERIMENTAL DE “PRATELEIRAS MISCELÂNEAS”

    Get PDF
    O principal objetivo do presente trabalho foi avaliar, experimentalmente e analiticamente, a capacidade de carga, por nĂ­vel, de dois diferentes tipos de “prateleiras miscelĂąneas”. Esta avaliação consistiu na realização de ensaios mecĂąnicos, isto Ă©, testes experimentais de carregamento dos nĂ­veis das prateleiras e modelamento atravĂ©s de elementos finitos das mesmas. Os resultados mostraram que os testes experimentais estĂŁo de acordo com o modelo analĂ­tico quanto aos pontos de maiores tensĂ”es e rupturas

    Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent

    Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent

    School of Public Accounting. Volume 16 No. 22 November 1991

    Get PDF
    Este informe es un estudio mundial, patrocinado por AICPA, que analiza el estado actual de la preparaciĂłn y presentaciĂłn de informaciĂłn financiera, a partir de lo cual propone los cambios que se requieren implementar.Editorial. Documentos. Profesores. Estudiantes.This report is a worldwide study, sponsored by AICPA, that analyzes the current state of the preparation and presentation of financial information, based on which it proposes the changes that need to be implemented

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Simulating core electron binding energies of halogenated species adsorbed on ice surfaces and in solution with relativistic quantum embedding calculations

    Full text link
    In this work we investigate the effects of the environment on the X-ray photoelectron spectra of hydrogen chloride and the chloride ions adsorbed on ice surfaces, as well as of chloride ions in water droplets. In our approach, we combine a density functional theory (DFT) description of the ice surface with that of the halogen species with the recently developed relativistic core-valence separation equation of motion coupled cluster (CVS-EOM-IP-CCSD) via the frozen density embedding formalism (FDE), to determine the K and L1,2,3_{1,2,3} edges of chlorine. Our calculations, which incorporate temperature effects through snapshots from classical molecular dynamics simulations, are shown to reproduce experimental trends in the change of the core binding energies for Cl−^- upon moving from a liquid (water droplets) to an interfacial (ice quasi-liquid layer) environment. Our simulations yield water valence band binding energies in good agreement with experiment, and that vary little between the droplets and the ice surface. For the halide core binding energies there is an overall trend of overestimating experimental values, though good agreement between theory and experiment is found for Cl−^- in water droplets and on ice. For HCl on the other hand there are significant discrepancies between experimental and calculated core binding energies when we consider structural models which maintain the H-Cl bond more or less intact. An analysis of models that allow for pre-dissociated and dissociated structures suggests that experimentally observed chemical shifts in binding energies between Cl−^- snd HCl would reqire that H+^+ (in the form of H3_3O+^+) and Cl−^- are separated by roughly 4-6 A.Comment: arXiv admin note: substantial text overlap with arXiv:2111.1390

    How does bending the uranyl unit influence its spectroscopy and luminescence

    No full text
    International audienceBent uranyl complexes can be formed with chloride ligands and 1,10-phenanthroline (phen) ligands bound to the equatorial and axial planes of the uranyl(VI) moiety, as revealed by the crystal structures, IR and Raman spectroscopy and quantum chemical calculations. With the goal of probing the influence of chloride and phenanthroline coordination enforcing the bending on the absorption and emission spectra of this complex, spin-orbit time-dependent density functional theory calculations for the bare uranyl complexes as well as for the free UO2Cl2 subunit and the UO2Cl2(phen)2 ligand were performed. The emission spectra has been fully simulated by ab initio methods and compared to experimental photoluminescence spectra, recorded for the first time for UO2Cl2(phen)2. Notably, the bending of uranyl in UO2Cl2 and UO2Cl2(phen)2 triggers excitations of the uranyl bending mode, yielding a denser luminescence spectrum
    corecore