182 research outputs found

    A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models

    Get PDF
    Hydrologic models can be categorized as being either Newtonian or Darwinian in nature. The Newtonian approach requires a thorough understanding of the individual physical processes acting in a watershed in order to build a detailed hydrologic model based on the conservation equations. The Darwinian approach seeks to explain the behavior of a hydrologic system as a whole by identifying simple and robust temporal or spatial patterns that capture the relevant processes. Darwinian-based hydrologic models include the Soil Conservation Service (SCS) curve number model, the abcd model, and the Budyko-type models. However, these models were developed based on widely differing principles and assumptions and applied to distinct time scales. Here, we derive a one-parameter Budyko-type model for mean annual water balance which is based on a generalization of the proportionality hypothesis of the SCS model and therefore is independent of temporal scale. Furthermore, we show that the new model is equivalent to the key equation of the abcd model. Theoretical lower and upper bounds of the new model are identified and validated based on previous observations. Thus, we illustrate a temporal pattern of water balance amongst Darwinian hydrologic models, which allows for synthesis with the Newtonian approach and offers opportunities for progress in hydrologic modeling

    Intraspecific variation of a dominant grass and local adaptation in reciprocal garden communities along a US Great Plains' precipitation gradient: implications for grassland restoration with climate change

    Get PDF
    Citation: Johnson, L. C., Olsen, J. T., Tetreault, H., DeLaCruz, A., Bryant, J., Morgan, T. J., . . . Maricle, B. R. (2015). Intraspecific variation of a dominant grass and local adaptation in reciprocal garden communities along a US Great Plains' precipitation gradient: implications for grassland restoration with climate change. Evolutionary Applications, 8(7), 705-723. doi:10.1111/eva.12281Identifying suitable genetic stock for restoration often employs a best guess' approach. Without adaptive variation studies, restoration may be misguided. We test the extent to which climate in central US grasslands exerts selection pressure on a foundation grass big bluestem (Andropogon gerardii), widely used in restorations, and resulting in local adaptation. We seeded three regional ecotypes of A.gerardii in reciprocal transplant garden communities across 1150km precipitation gradient. We measured ecological responses over several timescales (instantaneous gas exchange, medium-term chlorophyll absorbance, and long-term responses of establishment and cover) in response to climate and biotic factors and tested if ecotypes could expand range. The ecotype from the driest region exhibited greatest cover under low rainfall, suggesting local adaptation under abiotic stress. Unexpectedly, no evidence for cover differences between ecotypes exists at mesic sites where establishment and cover of all ecotypes were low, perhaps due to strong biotic pressures. Expression of adaptive differences is strongly environment specific. Given observed adaptive variation, the most conservative restoration strategy would be to plant the local ecotype, especially in drier locations. With superior performance of the most xeric ecotype under dry conditions and predicted drought, this ecotype may migrate eastward, naturally or with assistance in restorations

    Gully cut- and- fill cycles as related to agromanagement : a historical curve number simulation in the Tigray Highlands

    Get PDF
    Gully cut-and-fill dynamics are often thought to be driven by climate and/or deforestation related to population pressure. However, in this case-study of nine representative catchments in the Northern Ethiopian Highlands, we find that neither climate changes nor deforestation can explain gully morphology changes over the twentieth century. Firstly, by using a Monte Carlo simulation to estimate historical catchment-wide curve numbers, we show that the landscape was already heavily degraded in the nineteenth and early twentieth century – a period with low population density. The mean catchment-wide curve number (> 80) one century ago was, under the regional climatic conditions, already resulting in considerable simulated historical runoff responses. Secondly, twentieth century land-cover and runoff coefficient changes were confronted with twentieth century changing gully morphologies. As the results show, large-scale land-cover changes and deforestation cannot explain the observed processes. The study therefore invokes interactions between authigenic factors, small-scale plot boundary changes, cropland management and sociopolitical forces to explain the gully cut processes. Finally, semi-structured interviews and sedistratigraphic analysis of three filled gullies confirm the dominant impact of (crop)land management (tillage, check dams in gullies and channel diversions) on gully cut-and-fill processes. Since agricultural land management – including land tenure and land distribution – has been commonly neglected in earlier related research, we argue therefore that it can be a very strong driver of twentieth century gully morphodynamics
    • …
    corecore