
1 
 

Published as: Lanckriet, S., Frankl, A., Gebrekidan Mesfin, 

Descheemaeker, K., Nyssen, J. 2014. Gully cut-and-fill cycles 

as related to agro-management: a historical curve number 

simulation in the Tigray Highlands. Earth Surface Processes 

and Landforms, vol. 40 (6): 796-808. 

 

ABSTRACT 

Gully cut-and-fill dynamics are often thought to be driven by climate and/or 

deforestation related to population pressure. However, in this case-study of nine 

representative catchments in the North Ethiopian Highlands, we find that neither 

climate changes nor deforestation can explain gully morphology changes over the 

20th century. Firstly, by using a Monte Carlo simulation to estimate historical 

catchment-wide curve numbers, we show that the landscape was already heavily 

degraded in the 19th and early 20th century – a period with low population density. 

The mean catchment-wide curve number (>80) one century ago was, under the 

regional climatic conditions, already resulting in considerable simulated historical 

runoff responses. Secondly, 20th century land cover and runoff coefficient changes 

were confronted with 20th century changing gully morphologies. As the results show, 

large-scale land cover changes and deforestation cannot explain the observed 

processes. The study therefore invokes interactions between authigenic factors, 

small-scale plot boundary changes, cropland management and sociopolitical forces 

to explain the gully cut processes. Finally, semi-structured interviews and 

sedistratigraphic analysis of three filled gullies confirm the dominant impact of 

(crop)land management (tillage, check dams in gullies and channel diversions) on 

gully cut-and-fill processes. Since agricultural land management – including land 

tenure and land distribution – has been commonly neglected in earlier related 
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research, we argue therefore that it can be a very strong driver of 20th century gully 

morphodynamics. 

Keywords: hydrogeomorphology, sedistratigraphy, gully incision, land management, 

soil erosion, land use change 

1. INTRODUCTION 

Gully incision (cut) and subsequent aggradation (fill) occur in successive cycles 

(Vanwalleghem et al., 2005a). At the first stage of gully initiation, mechanic actions of 

water on the soil are predominant at the gully bottom and rapid mass movement 

occurs on the gully sides (Sidorchuk, 1999). Gully channel formation is very intense 

during this early period of gully initiation, when the morphological characteristics of 

the gully (length, depth, width, cross-sectional area, and volume) are far from stable. 

Kosov et al. (1978), quoted in Sidorchuk (1999), showed that the first gully incision 

stage is relatively short and lasts for about 5% of the gully’s lifetime, but 90% of the 

gully’s length, 60% of the gullied area and 35% of the gully’s volume are formed 

during this period. Hence, at first gully length development is an important 

geomorphic process, followed by subsequent width development (Schumm, 2005). 

After the first ‘dynamic’ incision phase, a long period of geomorphic ‘maturity’ occurs 

(Sidorchuk, 1999). In particular, the growth of gully volume is exponentially decaying 

in rate with time (Thomas et al. 2004), while in the North Ethiopian Highlands gully 

volume follows a sigmoidal trend (Nyssen et al., 2006). Maturity is then followed by 

gully infill, which was measured by Vanwalleghem et al. (2005a) in Belgium, showing 

very rapid infill rates (in casu 6.4 cm a-1). Fuller and Marden (2010) showed that gully 

incision and aggradation can even be yearly processes. Vanwalleghem et al. (2005a) 
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therefore concluded that gully incision and infilling under cropland can be relatively 

rapid processes, as they found five cycles of cut-and-fill in 350 years. 

 

Worldwide often a combination of intensive land use change and extreme rainfall is 

blamed for gully formation (e.g. Stankoviansky, 2003; Vogt, 1953; Fryirs & Brierley, 

1998; Carnicelli et al., 2009). A literature review regarding the drivers of Holocene 

terrestrial gully cut-and-fill processes all over the world (Table 1) shows influences of 

(neo)tectonics, road building, climate changes, land cover change and deforestation, 

overgrazing, cropland management and sea-level change. As expected, land cover 

and climate changes are mentionned as the main gully cut-and-fill drivers in most of 

the studies. Meanwhile, the impact of cropland management (with 4 relevant studies) 

is not often investigated and therefore highly underrepresented in such geomorphic 

studies (Table 1). However, cropland management could have a very significant 

influence on gully cut and fill processes, even under stable land cover. Stolz (2011) 

showed for example from a case study in Germany that the historical introduction of 

the improved three-field crop rotation system intensified agriculture and led to 

increased soil erosion and gully formation. Nagasaka et al. (2005) discussed the 

same phenomenon under mechanization of agriculture in modern Japan. The study 

of Zaimes & Schultz (2012) focused on the effect of riparian land management on 

gullying; while Casali et al. (1999) showed the impact of tillage practices, stubble 

maintenance, and gully refill by local farmers. 

 

TABLE 1 
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In the Ethiopian Highlands, Frankl et al. (2011, 2013) pointed to the re-activation of a 

dense gully network in the 1960s, which results in relatively wide gullies at present 

(Figure 1). The gully channels are already visible on historical photographs of the 19th 

and early 20th century as a dormant system inherited from a pre-20th century 

activation. During the re-activation of the system, there were high denudation rates, a 

high sediment supply and activation of first-order streams (Frankl et al., 2011). 

Related 20th century land degradation in Northern Ethiopia is amongst others linked 

to interplays of drought and land cover changes (de Mûelenaere et al., 2012; Biazin 

and Sterk, 2013). Land cover changes induce vulnerability for climatic shocks, 

resulting in environmental degradation in the Highlands (Frankl et al., 2011; 2013). 

Based on repeating historical landscape photographs, it can be seen that the 

Northern Ethiopian landscape was already largely deforested in the 19th century 

(Nyssen et al., 2009; Meire et al., 2013). However, if deforestation was mainly a pre-

20th century process, it would be less responsible as a direct driver of 20th century 

land degradation processes. This would then lead to the need to investigate other 

driving factors of 20th century land degradation, which are more related to agricultural 

management (agro-management; e.g. including land tenure changes, environmental 

management programs, agricultural intensification and land distribution). Yet, the 

historical evolution of agricultural management is difficult to assess. For instance, the 

spatial distribution of the historical dynamics of overgrazing, land ownership and 

cropland management (e.g. fertilization, plowing frequency) are poorly known as they 

are invisible on historical aerial and terrestrial photographs.  

 

 

FIGURE 1 
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Taking these elements into account, two research issues arise. First, the direct 

impact of land cover changes on 20th century gully cut-and-fill processes was never 

quantified and estimated for the Highlands. Second, as stated before, the impact of 

agro-management on gully cut-and-fill dynamics is not well understood worldwide 

and in particular in North Ethiopia. Therefore, this paper presents a simple method for 

estimating historical curve numbers. This Monte Carlo based method will be 

illustrated using case studies of 19th century and early-20th century gully activity in six 

catchments in North Ethiopia. Then, we will estimate the contribution of land-cover 

changes on changing gully peak discharges over the 20th century in these 

catchments. Finally, the impact of cropland management on gully infill will be studied 

in three additional catchments. 

 

2. METHODS AND MATERIALS 

2.1 Study region 

The Tigray region is located in the North of the Ethiopian Highlands, and active 

gullies are dissecting its landscape (Frankl et al., 2013). Elevations in the Tigray 

Highlands range between 1500 and 4000 m a.s.l. (Figure 2). In this mountainous 

region, the geology comprises rocks of both Precambrian and Phanerozoic ages. At 

the base, Precambrian metavolcanics are situated; with on top relatively thin 

Paleozoic formations. The Paleozoic rocks include the Enticho Sandstone Formation 

(of fluvioglacial origin) and the Adaga Arbi glacial deposits (tillites) (Bussert and 

Schrank, 2007). Later, Mesozoic sandstones (Adigrat sandstone), limestones (Antalo 

limestone) and shales (Agula shale) were deposited (Merla et al., 1979), followed by 
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the Amba Aradam sandstone (a lateritised sandstone of the Lower Cretaeceous with 

the upper part containing tuffaceous mudstone). These sedimentary rocks were 

subsequently covered by Tertiary volcanics, such as the trap basalts of the Ashangi 

group (black alkali olivine basalts of the Paleocene, Oligocene and Miocene, that are 

often interbedded with lacustrine deposits of silicified limestone and diatomite with 

gastropods). Drainage occurs mainly towards the Tekeze-Nile river system and 

partially to the Danakil depression of the African Rift Valley. 

FIGURE 2 

Monsoonal precipitation occurs from June until September as intense rainstorms with 

large raindrop sizes (Nyssen et al., 2005). Annual precipitation increases from north 

to south, ranging between 500 and 900 mm yr−1 (Jacob et al., 2013). Inter-annual 

rainfall variability is equally important, as Nyssen et al. (2005) showed average yearly 

rainfall depths in the study area range between 546 mm in 2002 to 879 mm in 1998 

in Hagere Selam.  

In Northern Ethiopia, before the late 19th century, the agro-system was organised in a 

‘tributary’ way (locally named gult-system), and later the agro-system became ‘feudal’ 

and highly unequal (Ståhl, 1974). Local noblemen owned most of the lands (Bruce, 

1976), and these risti lands were often lent out in a sharecropping system, locally 

named mwufar (Segers et al., 2010). The military regime (1974-1991) tried to 

implement a land reform, which succeeded only partially in the study area (Lanckriet 

et al., 2014). After the end of military regime in 1991, another land redistribution was 

organised, so all households received about three farm plots. Croplands are 

commonly cultivated with wheat (Triticum sp.), barley (Hordeum vulgare L.), hanfez, 

which is wheat and barley sown together, and teff (Eragrostis tef (Zuccagni) Trotter), 
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and are ploughed with the local ard plough or mahresha. For Ethiopia, the total 

population was estimated at 6.6 million in 1868 while it was about 82 million people in 

2011 (Nyssen et al., 2014). 

Due to highly erosive rainfall, soil erosion in the region is intensive, notably due to the 

occurrence of intensive gullying (Nyssen et al., 2004). In the Northern Ethiopian 

Highlands, three main phases in gully development are identified during the 20th 

century: (i) a phase of relatively stable gullies that was evidenced from historical 

photographs since 1868 and lasted until the 1960s, (ii) a gully incision phase with 

region-wide activation of the gully channels between the 1960s and ca. 2000, and (iii) 

an initial gully stabilization phase related to reduced flash flood peaks after 2000 

(Frankl et al., 2011, 2013). 

 

2.2 Case-study sites in North Ethiopia 

2.2.1 Repeat photography sites with one century interval 

Historical gully top widths (W) were identified based on the quantification of historical 

changes in gully cross-sections using repeat photography (Frankl et al., 2011) 

(Figure 3) (Table 2). Frankl et al. (2011) measured the observable top width, 

maximum depth and bottom width of the gully cross-sections for the 19th and early 

20th century by comparing it to the early 21st century situations. This was done by 

calibrating gully top widths on digitized terrestrial photographs with field 

measurements. For a full description of this methodology, the reader is referred to 

Frankl et al. (2011). Frankl et al. (2011) showed that the accuracy of these top width 

measurements is 10%, as assessed by five replicates of the measurement procedure 

by experienced geomorphologists. In order to compare the early 20th century 
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situation with the early 21st century for relatively ‘stabilized’ gullies, only the 

photographs taken before 1943 and after 2000 could be used in this study. This 

included six repeated photograph couples in six catchments on basalt near Bolago (1 

couple), Atsela (2 couples) and Ashenge (3 couples); (Figure 2). The reader must 

consider the fact that the gully widths identified on the photographs are reflecting the 

environment ‘at its most degraded state’. The channel widths from the early 21st 

century are therefore probably the result of flashfloods occurred during the 1980s-

1990s; while the channel widths of the early 20th century are the results of flashfloods 

occurred during the 19th or early 20th century. 

 

FIGURE  3 

TABLE 2 

 

 

2.2.2 Filled gullies 

Additionally, three partially silted channels were chosen in distinct environments in 

the Highlands of Northern Ethiopia (Figure 4), depending on the occurrence of 

different lithologies and based on short interviews with local farmers that focused on 

changes in local gully morphodynamics (Figure 2). The partially filled channel in 

Ma’ay Bati (13.65126°N – 39.21895°E) is located downslope of the Amba Aradam 

sandstone cliff. The channel itself has been incised in colluvium overlying oolitic 

limestones and marls of the Antalo formation (Merla et al., 1979). The filled channel 

in Sinkata (14.04785°N – 39.58263°E) is situated downslope of a cliff of Paleozoic 

Enticho Sandstone. The channel itself has been incised in colluvium overlying 

Precambrian metavolcanics (Bussert and Schrank, 2007). The paleochannel in 
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Atsela (12.93180°N – 39.52446°E) is incised in colluvium overlying trap basalts of the 

Ashangi group (Merla et al., 1979).  

 

FIGURE 4 

 

 

2.3 Monte Carlo simulation of curve numbers using land cover data 

 

Based on existing historical land cover data obtained using warped repeat 

photography (see Meire et al., 2013) with a particular areal extent Ax for a particular 

land cover type x, and with runoff coefficients Cx calibrated for these land cover types 

(Descheemaeker et al., 2006; Lanckriet et al., 2012), catchment-weighted runoff 

coefficients Ci could be calculated as: 





x
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The areal extent of the land cover types was calculated by warping land cover units 

from terrestrial photographs to the horizontal plane of the map, including a meticulous 

quality check of the warping results (Meire et al., 2013). These catchment-weighted 

runoff coefficients Ci could be converted to catchment-weighted curve numbers CNi, 

by combining the following equations based on the calibrations by Descheemaeker et 

al. (2006) and Descheemaeker et al. (2008) for the Tigray Highlands (on basalt and 

limestone): 
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where calibration parameters κ = 165.4 and λ = 37.6 (Descheemaeker et al., 2006); 

VEGi the total woody vegetation cover (VEG; in %) and calibration parameters μ = 

0.021 and ξ = 8.99 (Descheemaeker et al., 2008). Because the VEG term disappears 

while combining Equation 2 and 3, there is no need to determine vegetation cover. 

CN represents the catchment-wide average curve number defined as: 
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where Q is the runoff (mm), P is the rainfall (mm) and s is the storage parameter 

(SCS, 2004). According to Boughton (1989), curve numbers are widely used to 

predict runoff under varying land cover conditions in catchments from 0.25 ha up to 

1000 km2. For relevant land cover types, one can empirically calibrate the curve 

number and derive S, which is the maximum storage of the catchment. Despite their 

empirical nature, curve numbers are useful runoff prediction tools in semi-arid areas 

(see El-Hames, 2012; Teka et al., 2013). Here, hydrological models are not always 

directly applicable. When rigorously calibrated under local conditions, the method can 

provide accurate predictions of runoff, which is the case in Tigray (Descheemaeker et 

al., 2008). Hence, we preferred to use this method, since it is a very well calibrated 

runoff model in the Tigray Highlands and because of the possibility of integrating the 

curve numbers with runoff coefficients. 

 

However, since the runoff coefficients Cx calculated by Descheemaeker et al. (2006) 

and Lanckriet et al. (2012) have considerable standard deviations, the curve 

numbers had to be estimated using a Monte Carlo simulation, in order to account for 

error propagation. The simulation was based on 10 000 runs, following the rule of 

thumb that such simulations yield errors less than 1% (Koop et al., 2007). As shown 
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by the runoff plot data of Descheemaeker et al. (2006) and Lanckriet et al. (2012), we 

can apply a normal distribution of the runoff coefficients (variance taken as 0.1Cx). 

Given a standard deviation of 0.09 on the runoff coefficients (Lanckriet et al., 2012), 

allowing such a large variance ensures us that all errors are surely incorporated. 

Monte Carlo sensitivity analysis allowed assessing the impact of the different land 

cover types on the catchments’ runoff vulnerability. Using the curve number method, 

runoff responses to a given daily rainfall sequence could be simulated with the 

obtained catchment-wide curve numbers. This daily rainfall sequence was taken for a 

random year (2006), measured at the Mekele-Quiha Airport meteorological station, 

which represents a high-quality record for the region. 

 

2.4 Estimations of peak flow discharge changes from land cover changes 

Based on the same existing historical land cover change data (Meire et al., 2013), 

and with the runoff coefficients calibrated for these land cover types (Descheemaeker 

et al., 2006; Lanckriet et al., 2012), peak discharge changes ΔQp induced by those 

land cover changes ΔC could be calculated following the rational formula (Dunne and 

Leopold, 1978): 

CQCQCIAQ ppp         (5) 

where γ is a calibration parameter; C is the runoff coefficient; A is the runoff-

contributing area (ha); Qp is peak flow discharge (m3/s); and I is the rainfall intensity 

(mm/h). The rational method is still widely used because it is a simple model that 

requires few input parameters (Vanwalleghem et al., 2005), and gives satisfactory 

results (Viessman et al., 1989; Titmarsh et al., 1995), even for dryland areas (Graf, 

2002). The equation can however induce errors (Graf, 2002) and was therefore 
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calibrated in our study area (Tesfaalem et al., 2014), who show that the model yields 

satisfactory results. Moreover, we use here only the proportionality between Qp and 

C.  

 

2.5 Estimation of peak flow discharges from gully top widths on photographs 

Gully peak flow discharges Qp can also be estimated from the gully channel top 

widths W. Nachtergaele et al. (2002) showed from field measurements, field 

experiments and laboratory experiments, that in general a good W-Qp relation is valid 

for ephemeral gullies, but also for permanent stabilized gullies such relationships can 

be applied (Sidorchuk, 1999). Derivation of peak flow discharge (Qp) can thus be 

done using the following equation (Nachtergaele et al., 2002):  

 




 WQQW pp

1
.         (6) 

In general, the exponent β takes values of ca. 0.3 for rills (Nachtergaele et al., 2002); 

and approaches 0.5 for flashfloods in semi-arid areas (Graf, 2002). Torri et al. (2006) 

show that differences in climate, air temperature, channel gradient, land cover, 

texture and presence of a dry season are negligible for the value of β, which is in 

general 0.51 for channels wider than 0.5 m. Reported values for α are 1.13 for rills 

(Gilley et al., 1990), and range between 2.51 (Nachtergaele et al., 2002), 3.0 and 

3.17 (Sidorchuk, 1999; Nachtergaele et al., 2002) for gullies. In our study area, Frankl 

et al. (2013) found that channel widths are indeed strongly and positively related to a 

discharge proxy (catchment area), following a power relation. For our wide and 
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permanent gullies, the overall β coefficient was chosen (0.51; Torri et al., 2006) and α 

was set at its most extreme values 2.51 and 3.17 (Sidorchuk, 1999).  

 

2.6 Interviews, profile pits and literature review 

In order to investigate the sedistratigraphy of the silted channels, eight profile pits of 

approximately 2 x 1 m² and 2 m depth were dug into the channels of the three gullies 

(December 2012). More pits were dug in the largest channels, in order to ‘capture’ 

the entire gully width signal. One pit was dug in the May Bati gully, two pits in the 

Sinkata gully (both in the middle of the channel, with 50 m separation) and five pits in 

the Atsela gully (all in the middle of the channel, with 10 m separation from each 

other). Stratigraphy (color, boundaries, fabric, and stoniness) was recorded for all 

four sides of all eight pits. At the middle of the downslope side of the pits, samples for 

laboratory analysis were taken at depth intervals of approximately 15 cm. Wet sieving 

was performed at 64 µm, and dry sieving of the largest fractions (at 2 mm, 1 mm, 500 

µm, 250 µm, 106 µm and 75 µm). Mineralogy was determined with microscopy for 

the 250 µm - 106 µm fraction of the samples at 50 cm depth. Some 2.5-3 g of the 

remaining silt and clay fraction was mixed with a 40 ml 0.2% sodium 

hexametaphosphate solution, shaken by sonication, and analyzed with X-ray 

sedigraphy (Micromeritics, 2013). Texture was determined using the USDA 

classification. Finally, in the surroundings of the infilled gullies, 16 open interviews 

with key informants (elder farmers who had lived and worked in the area since their 

childhood) were conducted (4 around the May Bati gully, 6 around the Sinkata gully 

and 6 around the Atsela gully). Farmers were asked to describe the gully evolution 

and the timing and processes of the gully infill. 
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Further, in line with earlier research in the study area (e.g. Naudts, 2000; Smit & 

Tefera, 2011) and using experience with interviewing gained in earlier research 

(Lanckriet et al., 2014), the likely relation between a changing agro-management 

(including property rights, the size of land holdings, conservation activities and 

cropland management) and gully cut-and-fill could be identified. 

 

3. RESULTS 

3.1 Estimation of catchment-wide Curve Numbers 

Based on the existing land cover data and runoff coefficients, catchment-scale runoff 

coefficients were calculated for the early 20th and 21st century using Eq. 1 (Table 3). 

It is clear that land cover changes and deforestation resulted ceteris paribus hardly in 

overall higher runoff responses over the 20th century (runoff coefficients +5.9, +3.3 

and -32.8 % for the catchments); (Table 3). 

TABLE 3 

Curve numbers were then calculated under the 19th and early 20th century land cover 

situation using Eq. 2 & 3 (Table 3). The resulting average curve number based on the 

Monte Carlo simulation (Figure 5a) is CNaverage = 81.1; with st. dev. = 2.3 (Figure 5a). 

Since these simulated catchment-wide curve numbers are relatively high (on average 

>80), it is clear that the Highlands were already heavily degraded and deforested 

during the 19th and early 20th century. This can be illustrated by simulating the runoff 

response with the average early 20th century curve numbers as compared to curve 

numbers of contemporary croplands using Eq. 4 (Nyssen et al., 2010; Figure 6). For 

the same daily rainfall sequence, the early 20th century runoff response is simulated 
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higher than the contemporary cropland runoff response. In general, and contrary to 

the common perception, the simulation shows that the impact of land cover on 

surface water runoff in the Highlands was one century ago about the same as today. 

Finally, Monte Carlo sensitivity analysis (effect of the land cover type on the curve 

number) showed that the curve numbers were very sensitive to the areal extent of 

bushland during the early 20th century (Figure 5b) – whereas runoff sensitivity shifted 

towards the areal extent of cropland during the early 21st century (Figure 5c). 

It is worth mentioning that the recent photograph of the relatively wide gully in Bolago 

may not show a situation in equilibrium with the current environmental conditions, but 

instead may show a situation inherited from the 1970s or 1980s, before recent 

reforestation took place. As stated before, the largest peak discharges must indeed 

be a result of a situation when the catchments were in their most degraded state.  

FIGURE 5 

FIGURE 6 

 

3.2 Reconstruction of the gully peak discharge changes over the 20th century 

Historical peak flow discharges simulated for the different gully widths (Eq. 6) ranged 

between 7 and 53 m3/s (Table 4). 

 

TABLE 4 

Average gully width increase over the 20th century was 6.4 m, with a significant t-test 

for the difference of means of the two periods (p < 0.05). Even under the extreme 
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scenario of a 10% underestimation in historical top width measurements and a 10% 

overestimation in recent top width measurements, the average gully width increase 

over the 20th century was still 4.2 m. This corresponds to a minimum 20th century 

average peak discharge increase of 10.6 ± 3.7 m3/s (Table 4), equal to a discharge 

increase of 71.2 % in Ashenge, 80.2 % in Atsela and 43.3 % in Bolago. Moreover, 

two downstream gully channels around Ashenge (AB and AC) did not exist in the 

early 20th century, but incised in the course of the late 20th century. However, over 

the 20th century, it is unlikely that rainfall intensities (I) changed, as from 1900 no long 

term changes in annual rainfall have been observed for the nearby Blue Nile basin 

(Nyssen et al., 2007): ‘on average it rains as much around the year 2000 as around 

1900’. Possibly, due to road building, some catchment areas (A) might have 

increased in the Highlands (Nyssen et al., 2002), but this was not the case for our 

study catchments. Therefore, the huge average increase in stabilized gully width (6.4 

m), the important minimum increase in estimated gully peak discharges (10.6 ± 3.7 

m3/s) and the incision of the two downstream gully channels at Lake Ashenge during 

the second half of the 20th century must be related to changes in the runoff coefficient 

C.  

 

3.3 Reconstruction of the gully infill  

The influence of cropland management on gully cut-and-fill was clearly visible in the 

filled gully channels. The profile of the May Bati pit (Figure 7) suggests an unlayered 

antropogenic colluvial infill, given the fact that the texture of the black layer vertic 

material is the same (median grain size < 2 µm) as textures of the surrounding 

Vertisols (Lanckriet et al., 2012). The possibility of an alluvial aggradation was 
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discarded, since the sediments were not layered and showed no sedigraphic 

variability. As confirmed by farmers and as suggested by the texture analysis, the 

process of infill here is probably caused by a combination of tillage erosion and 

sheetwash that occurred in the last ten years. 

Six open interviews with local farmers around the gully of Atsela reveal that this 

channel flow had been diverted by farmers some decennia ago (Figure 8). Six 

interviews with farmers around the Sinkata gully reveal that the gully filled in due to 

the construction of large gabion dams, around ten years ago (Figure 8). The 

stratigraphic descriptions of the profile pits (Figure 7) confirm these hypotheses 

(colluvial unlayered vertic infill of the May Bati gully; and an alluvial layered infill with 

rounded gravel and boulders of the Atsela and Sinkata infill). As illustrated by the 

Atsela case, gullying is dependent on flow diversions by farmers around plot 

boundaries. Indeed, observations in the study area show that several gullies are not 

always situated in the lowest parts of the landscape. This social-qualitative 

information yields independent evidence, strengthening our main argument: gully 

systems are very sensitive to agro-management. 

FIGURE 7 

FIGURE 8 

4. DISCUSSION 

Over the second half of the 20th century, we observed a huge increase in stabilized 

gully width and an increase in estimated gully peak discharges. However, as shown 

in section 3.1, the impact of land cover on surface water runoff in the Highlands was 

one century ago about the same as today. In particular, instead of the expected peak 

discharge increases of 71.2 %, 80.2 % and 43.3%, peak discharge increases due to 
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land cover changes are calculated (using Eq. 5) at only 5.9%, 3.3 % and -32.8 % 

respectively (Table 3). Therefore, neither climate, road building, deforestation nor 

large-scale land cover changes can explain the changing gully morphology and peak 

discharges (average ΔW = 6.4 m; average minimum ΔQp = 10.6 m3/s; p < 0.05). 

Apart from authigenic factors (e.g. natural channel widening), we therefore invoke 

interactions between the management of the croplands, small-scale land boundary 

changes, and overuse of the lands that can explain the observed gully widening. In 

general, sociopolitical factors lead to land management decisions which have impact 

on gully widening. 

Firstly, an upslope extension of croplands during the 20th century, as reported by 

Naudts (2002), probably further decreased the vegetation cover and increased the 

runoff coefficient (C), due to the removal of remnant vegetation on the slopes. This 

trend has to be considered in its complex sociopolitical context. For example, the 

upslope extension of cropland during the 19th and 20th century may reflect the 

unequal character of land rights during late-feudal times. This extension was strongly 

related to an unequal division of land holding sizes, property rights and political 

power within the peasant community. Lanckriet et al. (2014) showed that during this 

period, farmers who were unable to claim genealogical relations with the founding 

families of the villages had no land rights and were forced to construct their farms 

and cultivate land on steep sloping and marginal terrains, leading to higher area-

weighted runoff coefficients and thus gully peak discharges. In the same political 

context, it is also important to note the huge impact of the civil war on land 

degradation processes (Lanckriet et al., 2014), and the land reorganizations that 

often follow periods of war.  
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Secondly, changes in the land boundaries (removal of vegetation strips and 

traditional daget conservation structures), equally increased the runoff coefficient of 

the catchment. According to Nyssen et al. (2007), traditional conservation structures 

(dagets and grass strips on plot boundaries) have been narrowed, from 2 m around 

50 years ago, to even less than 0.5 m at present. Thirdly, there has been a steady 

intensification of the agricultural production during the second half of the 20th century 

in Northern Ethiopia. Fallowing (mistigao) was a common practice, especially till the 

1970s, with fallow lands simultaneously being grazing land for the village herds 

(Corbeels et al., 2000). Grabham & Black stated in 1925 on the regional agricultural 

system that “it seems to involve an area remaining fallow nearly twice as large as that 

under crop. The consequence is that only about one-third of the land around villages 

is cultivated.” Runoff responses on fields with fallowing (CN = 89.5; Nyssen et al., 

2010) were simulated using Eq. 4, confirming that the high runoff production on such 

fields could have contributed to the high historical runoff in our case-catchments 

(Figure 6). Possibly, the plowing frequency of croplands increased over the 20th 

century, which would result in more concentrated flows and lead to soil compaction, 

resulting in a higher runoff coefficient and offsetting the hydrological effect of reduced 

fallowing (Smit & Tefera, 2011). Tesmesgen et al. (2008) show that the high yearly 

tillage frequency in the Highlands (4-5 times for teff and 3-4 times for maize) stems 

from the need to plow before the soil is wetted by rainfall. Periodic dry spells during 

the rainy season force farmers to plow frequently in order to avoid soil moisture 

losses. The more the farmer is educated and experienced, and the bigger his land 

and family, the higher is the tillage frequency on his fields (Tesmesgen et al., 2008). 

As shown by Lanckriet et al. (2012), average runoff coefficients under reduced tillage 

experiments are about half of the values under the current high tillage frequency 
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(18.8% compared to 30.4%). Under a scenario of reduced tillage on all croplands in 

the early 20th century, area-weighted runoff coefficients would have been 

considerably smaller (22.9% for Ashenge 1936, 24.7% for Atsela 1944, 31.3% for 

Bolago 1868). Overall, the scenario indicates that these gully systems are very 

sensitive to increased tillage frequency. 

Finally, increased cattle grazing can have an important impact on catchments’ runoff 

coefficients. According to Nyssen et al. (2004), the contemporary stocking rates are 

well in excess of estimated optimum stocking rates, resulting in decreased surface 

roughness, soil compaction and decreased hydraulic conductivity. As a 

consequence, infiltration becomes difficult and runoff coefficients increase (Nyssen et 

al., 2004). 

Given the environmental data scarcity in the Ethiopian Highlands, the methods 

presented here will reflect general environmental patterns. Since the equations 

employed are empirical, this study does not pretend to simulate gully peak 

discharges exactly. However, we presented a case-study in a limited number of 

catchments, with a simple methodology to estimate long-term trends in catchment-

wide curve numbers. We showed that neither climate nor deforestation could explain 

the observed gully morphodynamics, which is in sharp contrast with most geomorphic 

gully studies (Table 1). The average historical curve number (CNaverage = 81.1) was 

leading to considerable historical runoff responses. This contradicts several studies 

which claim that deforestation in North Ethiopia was mainly a 20th century process, 

although the origin of the data in these studies seems rather perfunctory. Parry 

(2003) states for example that “Ethiopia lost 98% of its forest cover during the last 50 

years”. Gore (1992) even claimed that Ethiopia’s forested land had decreased from 

40 to 1 percent from 1950 to 1992. Additionally, there is a common narrative that 
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Ethiopia and Eritrea had “44 % forest cover in 1885” (McCann, 1997), or “40 % in 

1900’’ (Allen-Rowlandson, 1989; Robinson et al., 1995). The situation may be 

different in the South of the country, but this study confirms the findings by Nyssen et 

al. (2009) who conclude that the Northern Ethiopian Highlands were already highly 

degraded before the 20th century. 

As population density in that period was rather low (Nyssen et al. (2009) estimated 

the population of Ethiopia in 1868 at about 9% of today’s population), this historical 

land degradation could not be of Malthusian origin. Indeed, gully cut processes prior 

to 1868 were observed from historical photographs, and are possibly related to the 

occurrence of droughts (Frankl et al., 2011). However, little information is available 

on the pre-19th century Northern Ethiopian climate (Little Ice Age; impact of El Niño) 

and pre-19th century land cover, so additional information should be gathered in this 

respect.  

In line with observations in the filled gullies, a case study in the Amhara region (Smit 

and Tefera, 2011) shows that gullying in the Ethiopian Highlands is sometimes 

impacted by interactions between farmers who use their political power positions to 

avoid and divert harmful flows from the neighbors’ farmlands. In general, cropland 

management and sociopolitical aspects of rural societies deserves more attention in 

geomorphological studies. 

 

5. CONCLUSIONS 

This study incorporated different driving factors (land cover changes and changes in 

cropland management) that influence the shape and dimensions of gullies in the 

Northern Ethiopian Highlands. Gully incision was reconstructed by estimating 
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historical peak flow discharges using values for historical gully width, as derived from 

recent photographs (2008-2009) and historical photographs (1868-1942). Average 

gully width increase over the 20th century was significant (p < 0.05) and was 

estimated at 6.4 m. Minimum peak discharges increased significantly (ΔQp: p < 0.05) 

during the 20th century and were calculated on average at 10.6 ± 3.7 m3/s. Monte 

Carlo simulation allowed to reconstruct curve numbers one century ago (on average 

81.1). This shows that the North Ethiopian Highlands were already severely 

deforested during in the 19th century. If deforestation is mainly a pre-20th century 

process, it is a less direct driver of 20th century land degradation processes. Hence, 

interactions between agricultural management (e.g. including environmental 

management, agricultural intensification and land distribution), small-scale land 

boundary changes (e.g. removal of dagets and grass strips) and sociopolitical factors 

(e.g. land tenure change, civil war) could be strong contributing factors. The historical 

evolution of those drivers is not directly visible on historical photographs. The 

estimated catchments’ runoff response resulting from 20th century land cover 

changes shows however that catchment-scale runoff changes and processes of gully 

widening can be partly linked to small-scale land-cover changes, but also to changes 

in the cropland management. Finally, sedistratigraphic analysis of recently filled 

gullies suggests a strong agronomic interference (tillage operations, conservation 

structures, channel diversions). Hence, a combination of simulations and historical 

evidence suggests that agro-management is an important driver of gullying and 

related land degradation processes. 
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FIGURES 

 
 

 

Figure 1: Example of a gully, in the Northern Ethiopian Highlands (13.65126°N – 
39.21895°E; looking upslope from the study site in May Ba’ati); for illustration 
purpose. Livestock for scale.  
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Figure 2: Study area with the location of the three investigated silted gullies (May 
Ba’ati is located next to Hagere Selam; the other gullies near Sinkata and Atsela (Adi 
Shuho)); and the location of the repeated photographs of gully cross-sections (2 sites 
near Atsela; 1 to the North of Maychew (Bolago); and 3 sites near Korem (Ashenge)). 
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Figure 3: Example of a historical photograph (Royal Engineers, 1868) with modern 
analog (Amaury Frankl, 2009) in the Bolago catchment (Viewpoint: 12.82722° N, 
39.51777° E), with indication of the calibrated gully top widths (W) and depths (D); 
(after Frankl et al., 2011); accuracy of the top width measurements is 10%, and 
accuracy of the depth measurement is 16% (Frankl et al., 2011). 

 

 

Figure 4: Infilled gully channels, for illustration purpose. From left to right, the upslope 
part of the May Bati gully (13.65126°N – 39.21895°E); the downslope part of the 
channel in Sinkata (14.04785°N – 39.58263°E) and the channel in Atsela 
(12.93180°N – 39.52446°E). The red arrow indicates the historical stream direction.  
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Figure 5: (a) Monte Carlo simulation (10 000 runs) of the curve numbers calculated 
with the data from Table 4; proportions in %; (b) results of the sensitivity analysis of 
the early 20th century landscape vulnerability to runoff; and (c) resulting sensitivity 
analysis of the early 21th century landscape vulnerability to runoff. 

 

 

Figure 6: 2006 rainfall (in red - Mekelle Airport; days after 1 June) was used to 
simulate runoff (Curve Number method) during the early 20th century (CN = 81.1; 
weighted average; in green), under cropland (free grazing, no stone bunds; in purple; 
CN = 79.9; Nyssen et al., 2010) and for fallow lands (CN = 89.5; in blue; after Nyssen 
et al., 2010). 
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May Bati (13.65126°N; 39.21895°E) Sinkata A (14.04785°N; 39.58263°E) 

 

 
Black clayey layer of 
vertic colluvium, 
containing mainly open 
2:1 phyllosilicates 
(smectites) and feldspars 
(Moulaert, 2012) – 
transported by tillage 
erosion & sheetwash. 
 
White calcareous 
rounded gravel indicating 
the paleo-bed 
 
 
 
Yellowish clayey 
weathered parent 
material, containing lime 
and some quartz, 
kaolinite, and micas; 
(Moulaert, 2012) 

  
 
 
Alluvial white sand 
 
 
Alluvium of randomly 
distributed sandstone 
pebbles in a sandy 
layered matrix, 
containing some 
micritic limestone 
fragments, sparitic 
calcite, quartz, biotite 
and zircon 
 
Pale white sand, 
supposedly weathered 
Enticho sandstone 

Sinkata B (14.04786°N; 39.58262°E) Atsela (12.93180°N; 39.52446°E) 

 

 
 
 
 
Alluvium of randomly 
distributed sandstone 
pebbles in a sandy 
layered matrix, containing 
some micritic limestone 
fragments, sparitic 
calcite,  quartz, biotite 
and zircon 
 
 
 
 
Pale white sand; 
weathered Enticho 
sandstone  

 
Alluvium of dark 
layered sands, 
containing hornblende, 
some plagioclase, 
quartz, zircon, biotite 
and muscovite 
 
Alluvial rounded gravel 
(diameter 5 cm) 
 
 
 
 
Heavy black (vertic) 
clay 

Figure 7: Schematized stratigraphy of the downslope sides of all eight profile pits. 
Depths are given in centimeters (cm). For Atsela, only one profile is shown, since all 
six profile pits showed similar layered alluvial sands and gravel. The red lines indicate 
the interface between infill and original bed. 
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Figure 8: Location with red arrow of the silted gullies in Atsela (left; 12.93180°N – 
39.52446°E) and Sinkata (right; 14.04785°N – 39.58263°E). The filled blue arrows 
show the direction of channel diversion for Atsela, and the location of the large 
gabions for Sinkata. Closer view of the channels in Atsela (lower left) and Sinkata 
(lower right). The red lines indicate the channel boundaries and the blue open arrow 
indicates the historical stream direction.  
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TABLES 
 

Table 1: Drivers of Holocene terrestrial gully cut-and-fill cycles. 
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Table 2: Historical and recent top widths of the cross-sections analyzed by Frankl et 

al. (2011), with an accuracy of 10%.  

Code date 
TWhistorical 

(m) 
date 

TWrecent 
(m) 

ΔTW (m) Coordinates (WGS84) 

M 1942 10.94 2009 14.82 3.88 12°54’44” N, 39°31’16” E 

M 1942 8.81 2009 11.90 3.09 12°54’44” N, 39°31’16” E 

P 1868 13.3 2009 16.00 2.70 12°49’37” N, 39°31’04” E 

Q 1936 14.42 2009 19.00 4.58 12°33’45” N, 39°31’22” E 

R 1936 0 2009 11.60 11.60 12°33’55” N, 39°31’27” E 

S 1936 0 2009 12.50 12.50 12°33’55” N, 39°31’27” E 

Average  7.9  14.3 6.4  

The codes are derived from Frankl et al. (2011); TWhistorical and TWrecent correspond to the gully top 
widths derived from the historical and recent photographs respectively; ΔTW corresponds to the 
difference between the two situations. 
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Table 3: Twentieth century land cover (Ax) changes in our study catchments 

(reported in Meire et al., 2013), runoff coefficients (Cx) calibrated by Descheemaeker 

et al. (2006) and Lanckriet et al. (2012) with normal distributions N (Cx, 0.1Cx) chosen 

for the Monte Carlo simulation; and predicted catchment runoff coefficients C (Eq. 1). 

Catchment Ashenge Atsela (1944-2008) Bolago (1868-2008) 

Cx     

Ax (%) 1936 2008 1944 2008 1868 2008 

Cropland 64.8 64.8 61.6 55.0 5.0 14.2 30.4 
Bush land 29.6 25.4 36.7 23.1 83.7 4.0 34.8 

Village 0.0 5.6 0.0 13.0 0.0 16.0 60.0 
Bare ground 5.6 4.2 0.0 0.0 0.0 0.0 7.7 
Grassland 0.0 0.0 1.4 1.4 5.2 26.0 23.5 

Forest 0.0 0.0 0.3 7.4 6.1 39.7 0.03 

Weighted C 30.4 32.2 31.8 32.9 31.9 21.4  

ΔC = ΔQp +5.9 % +3.3 % -32.8 %  
ΔQp from ΔW 

(Eq. 1) 
+71.2 % +80.2 % +43.3 %  

CNhistorical 80.8 81.3 81.3  

 
 

 

Table 4: Estimated peak flow discharges Qp, with a minimum and a maximum 
estimation, as calculated with Eq. (6), required to cause the gully morphology (Δ 
corresponds to the difference between the two situations). 

Locations 
Qp, historical 

MIN (m
3
/s) 

Qp, historical 

MAX (m
3
/s) 

Qp, recent 

MIN 

(m
3
/s) 

Qp, recent  

MAX 

(m
3
/s) 

Δ Qp MIN 

(m
3
/s)  

Δ Qp MAX 

(m
3
/s) 

Coordinates (WGS84) 

Atsela A 11.34 17.93 20.49 32.52 9.15 14.59 12.91911° N, 39.52189° E 

Atsela B 7.42 11.73 13.33 21.15 5.91 9.42 12.91931° N, 39.52156° E 

Bolago 16.62 26.30 23.81 37.79 7.19 11.49 12.82953° N, 39.51419° E 

Ashenge 
A 

19.48 30.82 33.35 52.93 13.87 22.11 12.56397° N, 39.52031° E 

Ashenge 
B 

x x 12.68 20.11 12.68 20.11 12.56528° N, 39.52417° E 

Ashenge 
C 

x x 14.68 23.29 14.68 23.29 12.56250° N, 39.52278° E 

Average 9.14 21.69 19.72 31.30 10.58 16.8  

 

 


