414 research outputs found
On Love-type waves in a finitely deformed magnetoelastic layered half-space
In this paper, the propagation of Love-type waves in a homogeneously and finitely deformed layered half-space of an incompressible non-conducting magnetoelastic material in the presence of an initial uniform magnetic field is analyzed. The equations and boundary conditions governing linearized incremental motions superimposed on an underlying deformation and magnetic field for a magnetoelastic material are summarized and then specialized to a form appropriate for the study of Love-type waves in a layered half-space. The wave propagation problem is then analyzed for different directions of the initial magnetic field for two different magnetoelastic energy functions, which are generalizations of the standard neo-Hookean and Mooney–Rivlin elasticity models. The resulting wave speed characteristics in general depend significantly on the initial magnetic field as well as on the initial finite deformation, and the results are illustrated graphically for different combinations of these parameters. In the absence of a layer, shear horizontal surface waves do not exist in a purely elastic material, but the presence of a magnetic field normal to the sagittal plane makes such waves possible, these being analogous to Bleustein–Gulyaev waves in piezoelectric materials. Such waves are discussed briefly at the end of the paper
Fractional reaction-diffusion equations
In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b)
derived solutions of a number of fractional kinetic equations in terms of
generalized Mittag-Leffler functions which provide the extension of the work of
Haubold and Mathai (1995, 2000). The subject of the present paper is to
investigate the solution of a fractional reaction-diffusion equation. The
results derived are of general nature and include the results reported earlier
by many authors, notably by Jespersen, Metzler, and Fogedby (1999) for
anomalous diffusion and del-Castillo-Negrete, Carreras, and Lynch (2003) for
reaction-diffusion systems with L\'evy flights. The solution has been developed
in terms of the H-function in a compact form with the help of Laplace and
Fourier transforms. Most of the results obtained are in a form suitable for
numerical computation.Comment: LaTeX, 17 pages, corrected typo
Ground state properties of ferromagnetic metal/conjugated polymer interfaces
We theoretically investigate the ground state properties of ferromagnetic
metal/conjugated polymer interfaces. The work is partially motivated by recent
experiments in which injection of spin polarized electrons from ferromagnetic
contacts into thin films of conjugated polymers was reported. We use a
one-dimensional nondegenerate Su-Schrieffer-Heeger (SSH) Hamiltonian to
describe the conjugated polymer and one-dimensional tight-binding models to
describe the ferromagnetic metal. We consider both a model for a conventional
ferromagnetic metal, in which there are no explicit structural degrees of
freedom, and a model for a half-metallic ferromagnetic colossal
magnetoresistance (CMR) oxide which has explicit structural degrees of freedom.
The Fermi energy of the magnetic metallic contact is adjusted to control the
degree of electron transfer into the polymer. We investigate electron charge
and spin transfer from the ferromagnetic metal to the organic polymer, and
structural relaxation near the interface. Bipolarons are the lowest energy
charge state in the bulk polymer for the nondegenerate SSH model Hamiltonian.
As a result electrons (or holes) transferred into the bulk of the polymer form
spinless bipolarons. However, there can be spin density in the polymer
localized near the interface.Comment: 7 figure
Holographic anatomy of fuzzballs
We present a comprehensive analysis of 2-charge fuzzball solutions, that is,
horizon-free non-singular solutions of IIB supergravity characterized by a
curve on R^4. We propose a precise map that relates any given curve to a
specific superposition of R ground states of the D1-D5 system. To test this
proposal we compute the holographic 1-point functions associated with these
solutions, namely the conserved charges and the vacuum expectation values of
chiral primary operators of the boundary theory, and find perfect agreement
within the approximations used. In particular, all kinematical constraints are
satisfied and the proposal is compatible with dynamical constraints although
detailed quantitative tests would require going beyond the leading supergravity
approximation. We also discuss which geometries may be dual to a given R ground
state. We present the general asymptotic form that such solutions must have and
present exact solutions which have such asymptotics and therefore pass all
kinematical constraints. Dynamical constraints would again require going beyond
the leading supergravity approximation.Comment: 87 pages, begins with 10 page self contained summary of
results;v2:JHEP version; v3: typos corrected, see in particular formula D.1
Discovery of 24 radio-bright quasars at 4.9 <= z <= 6.6 using low-frequency radio observations
Galaxie
Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
- …