245 research outputs found

    Disease management at the wildlife-livestock interface: using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan, USA

    Get PDF
    The role of wildlife in the persistence and spread of livestock diseases is difficult to quantify and control. These difficulties are exacerbated when several wildlife species are potentially involved. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, has experienced an ecological shift in Michigan, with spillover from cattle leading to an endemically infected white‐tailed deer (deer) population. It has potentially substantial implications for the health and well‐being of both wildlife and livestock and incurs a significant economic cost to industry and government. Deer are known to act as a reservoir of infection, with evidence of M. bovis transmission to sympatric elk and cattle populations. However, the role of elk in the circulation of M. bovis is uncertain; they are few in number, but range further than deer, so may enable long distance spread. Combining Whole Genome Sequences (WGS) for M. bovis isolates from exceptionally well‐observed populations of elk, deer and cattle with spatiotemporal locations, we use spatial and Bayesian phylogenetic analyses to show strong spatiotemporal admixture of M. bovis isolates. Clustering of bTB in elk and cattle suggests either intraspecies transmission within the two populations, or exposure to a common source. However, there is no support for significant pathogen transfer amongst elk and cattle, and our data are in accordance with existing evidence that interspecies transmission in Michigan is likely only maintained by deer. This study demonstrates the value of whole genome population studies of M. bovis transmission at the wildlife‐livestock interface, providing insights into bTB management in an endemic system

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    Get PDF
    Peer reviewe

    Update of EULAR recommendations for the treatment of systemic sclerosis

    Get PDF
    The aim was to update the 2009 European League against Rheumatism (EULAR) recommendations for the treatment of systemic sclerosis (SSc), with attention to new therapeutic questions. Update of the previous treatment recommendations was performed according to EULAR standard operating procedures. The task force consisted of 32 SSc clinical experts from Europe and the USA, 2 patients nominated by the pan-European patient association for SSc (Federation of European Scleroderma Associations (FESCA)), a clinical epidemiologist and 2 research fellows. All centres from the EULAR Scleroderma Trials and Research group were invited to submit and select clinical questions concerning SSc treatment using a Delphi approach. Accordingly, 46 clinical questions addressing 26 different interventions were selected for systematic literature review. The new recommendations were based on the available evidence and developed in a consensus meeting with clinical experts and patients. The procedure resulted in 16 recommendations being developed (instead of 14 in 2009) that address treatment of several SSc-related organ complications: Raynaud's phenomenon (RP), digital ulcers (DUs), pulmonary arterial hypertension (PAH), skin and lung disease, scleroderma renal crisis and gastrointestinal involvement. Compared with the 2009 recommendations, the 2016 recommendations include phosphodiesterase type 5 (PDE-5) inhibitors for the treatment of SSc-related RP and DUs, riociguat, new aspects for endothelin receptor antagonists, prostacyclin analogues and PDE-5 inhibitors for SSc-related PAH. New recommendations regarding the use of fluoxetine for SSc-related RP and haematopoietic stem cell transplantation for selected patients with rapidly progressive SSc were also added. In addition, several comments regarding other treatments addressed in clinical questions and suggestions for the SSc research agenda were formulated. These updated data-derived and consensus-derived recommendations will help rheumatologists to manage patients with SSc in an evidence-based way. These recommendations also give directions for future clinical research in SSc

    Virtual Ontogeny of Cortical Growth Preceding Mental Illness

    Get PDF
    Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy

    J-PLUS: The javalambre photometric local universe survey

    Get PDF
    ABSTRACT: TheJavalambrePhotometric Local UniverseSurvey (J-PLUS )isanongoing 12-band photometricopticalsurvey, observingthousands of squaredegrees of theNorthernHemispherefromthededicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg2 mountedon a telescopewith a diameter of 83 cm, and isequippedwith a uniquesystem of filtersspanningtheentireopticalrange (3500–10 000 Å). Thisfiltersystemis a combination of broad-, medium-, and narrow-band filters, optimallydesigned to extracttherest-framespectralfeatures (the 3700–4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizingstellartypes and delivering a low-resolutionphotospectrumforeach pixel of theobservedsky. With a typicaldepth of AB ∼21.25 mag per band, thisfilter set thusallowsforanunbiased and accuratecharacterization of thestellarpopulation in our Galaxy, itprovidesanunprecedented 2D photospectralinformationforall resolved galaxies in the local Universe, as well as accuratephoto-z estimates (at the δ z/(1 + z)∼0.005–0.03 precisionlevel) formoderatelybright (up to r ∼ 20 mag) extragalacticsources. Whilesomenarrow-band filters are designedforthestudy of particular emissionfeatures ([O II]/λ3727, Hα/λ6563) up to z < 0.017, theyalsoprovidewell-definedwindowsfortheanalysis of otheremissionlines at higherredshifts. As a result, J-PLUS has thepotential to contribute to a widerange of fields in Astrophysics, both in thenearbyUniverse (MilkyWaystructure, globular clusters, 2D IFU-likestudies, stellarpopulations of nearby and moderate-redshiftgalaxies, clusters of galaxies) and at highredshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellarobjects, etc.). Withthispaper, wereleasethefirst∼1000 deg2 of J-PLUS data, containingabout 4.3 millionstars and 3.0 milliongalaxies at r <  21mag. With a goal of 8500 deg2 forthe total J-PLUS footprint, thesenumbers are expected to rise to about 35 millionstars and 24 milliongalaxiesbytheend of thesurvey.Funding for the J-PLUS Project has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel, the Spanish Ministry of Economy and Competitiveness (MINECO; under grants AYA2017-86274-P, AYA2016-77846-P, AYA2016-77237-C3-1-P, AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, AGAUR grant SGR-661/2017, and ICTS-2009-14), and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    14 p.Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes
    corecore