486 research outputs found

    Amperometric biosensor for lactate analysis in wine and must during fermentation

    Get PDF
    MADICA 2006 Conference, Fifth Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors, MADICA 2006 Conference, Fifth Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological SensorsInternational audienceA lactate oxidase-based amperometric biosensor is designed for lactate determination. Two methods of lactate oxidase immobilization on the surface of commercial SensLab platinum printing electrodes are compared. The sensor with lactate oxidase immobilized by physical adsorption in Resydrol polymer is shown to have both narrower dynamic range (0.004–0.5 mМ lactate) and higher sensitivity (320 nA/mM) as compared with that immobilized in poly(3,4-ethylenedioxythiophene) by electrochemical polymerization (0.05–1.6 mM and 60 nA/mM respectively). The operational stability of the biosensors developed is studied; the immobilization method is shown to be of no influence. The lactate content in wine and in wine material during fermentation is analyzed. The data obtained by amperometric lactate biosensor correlated with those of standard chromatography. The biosensor developed can be used in food industry for control and optimization of process of wine fermentation as well as for control of wine quality

    Conductometric biosensor based on whole-cell microalgae for assessment of heavy metals in wastewater

    No full text
    Whole-cell Chlorella vulgaris conductometric biosensors consisting of gold planar interdigitated electrodes and sol-gel algal membranes have been used for assessment of heavy-metal ions in water. These analytes act as algal alkaline phosphatase inhibitors. Enzyme residual activity has been measured in Tris-nitrate buffer in the presence of Mg²⁺ ions as activator. Operating conditions of this biosensor have been optimized and its characteristics are discussed. Detection limits are about 1 ppb for Cd²⁺, Co²⁺, Ni²⁺, Pb²⁺ and 10 ppb for Zn²⁺. The storage stability of the biosensor in buffer solution at 4 oC is more than 40 days. The biosensor has been used to assess wastewater pollution.Описан биосенсор для оценки содержания тяжелых металлов в воде. Для его создания клетки Chlorella vulgaris иммобилизировали на золотых планарных гребенчатых электродах с помощью золь–гель технологии. Тяжелые металлы являются ингибиторами щелочной фосфатазы. Остаточную активность иммобилизованного фермента измеряли в трис-нитратном буферном растворе в присутствии активатора: ионов магния. Оптимизированы рабочие характеристики биосенсора. Нижняя граница определения составляла 1 млрд ⁻¹ для Cd²⁺, Co²⁺, Ni²⁺, Pb²⁺ и 10 млрд ⁻¹ для Zn²⁺. Срок хранения биосенсора в буферном растворе при температуре 4 оC составляет более 40 дней. Биосенсор использован для оценки загрязнения тяжелыми металлами сточных вод.Описано біосенсор для оцінки вмісту важких металів у воді. Для його створення клітини Chlorella vulgaris іммобілізували на золотих планарних гребінчастих електродах за допомогою золь–гель технології. Важкі метали є інгібіторами лужної фосфатази. Залишкову активність іммобілізованого ферменту вимірювали в трис-нітратному буферному розчині за присутності активатора – іонів магнію. Оптимізовано робочі характеристики біосенсора. Нижня межа визначення складала 1 млрд ⁻¹ для Cd²⁺, Co²⁺, Ni²⁺, Pb²⁺ та 10 млрд ⁻¹ для Zn²⁺. Термін зберігання біосенсора у буферному розчині за температури 4 оC був більшим, ніж 40 діб. Біосенсор використано для оцінки забруднення важкими металами стічних вод

    Emergence of quasi-metallic state in disordered 2D electron gas due to strong interactions

    Full text link
    The interrelation between disorder and interactions in two dimensional electron liquid is studied beyond weak coupling perturbation theory. Strong repulsion significantly reduces the electronic density of states on the Fermi level. This makes the electron liquid more rigid and strongly suppresses elastic scattering off impurities. As a result the weak localization, although ultimately present at zero temperature and infinite sample size, is unobservable at experimentally accessible temperature at high enough densities. Therefore practically there exists a well defined metallic state. We study diffusion of electrons in this state and find that the diffusion pole is significantly modified due to "mixture" with static photons similar to the Anderson - Higgs mechanism in superconductivity. As a result several effects stemming from the long range nature of diffusion like the Aronov - Altshuler logarithmic corrections to conductivity are less pronounced.Comment: to appear in Phys. Rev.

    Rate-equation calculations of the current flow through two-site molecular device and DNA-based junction

    Full text link
    Here we present the calculations of incoherent current flowing through the two-site molecular device as well as the DNA-based junction within the rate-equation approach. Few interesting phenomena are discussed in detail. Structural asymmetry of two-site molecule results in rectification effect, which can be neutralized by asymmetric voltage drop at the molecule-metal contacts due to coupling asymmetry. The results received for poly(dG)-poly(dC) DNA molecule reveal the coupling- and temperature-independent saturation effect of the current at high voltages, where for short chains we establish the inverse square distance dependence. Besides, we document the shift of the conductance peak in the direction to higher voltages due to the temperature decrease.Comment: 12 pages, 6 figure

    Optical properties of structurally-relaxed Si/SiO2_2 superlattices: the role of bonding at interfaces

    Full text link
    We have constructed microscopic, structurally-relaxed atomistic models of Si/SiO2_2 superlattices. The structural distortion and oxidation-state characteristics of the interface Si atoms are examined in detail. The role played by the interface Si suboxides in raising the band gap and producing dispersionless energy bands is established. The suboxide atoms are shown to generate an abrupt interface layer about 1.60 \AA thick. Bandstructure and optical-absorption calculations at the Fermi Golden rule level are used to demonstrate that increasing confinement leads to (a) direct bandgaps (b) a blue shift in the spectrum, and (c) an enhancement of the absorption intensity in the threshold-energy region. Some aspects of this behaviour appear not only in the symmetry direction associated with the superlattice axis, but also in the orthogonal plane directions. We conclude that, in contrast to Si/Ge, Si/SiO2_2 superlattices show clear optical enhancement and a shift of the optical spectrum into the region useful for many opto-electronic applications.Comment: 11 pages, 10 figures (submitted to Phys. Rev. B

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    Dynamical mean-field approach to materials with strong electronic correlations

    Full text link
    We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Belief in a zero-sum game and subjective well-being across 35 countries

    Get PDF
    This article presents a short research report on the relationship between perceived antagonism in social relations measured using the Belief in a Zero-Sum Game (BZSG) scale, life satisfaction, and positive and negative affect. Given that individuals who believe that life is like a zero-sum game are likely to perceive their daily interactions with others as unfair, we expected that individuals with high BZSG experience more negative affect and fewer positive one, resulting in a lower satisfaction with life. In addition, we examined whether country-level BZSG may play a moderating role in these associations. Data were collected from student samples (N=7146) in 35 countries. Multilevel modelling revealed that perceived social antagonism in social relations is negatively associated with satisfaction with life and that this relationship is mediated by both positive and negative affect at the individual level. The relation of individual BZSG and negative affect on satisfaction with life were weaker in societies with higher country-level BZSG, suggesting that the effects of BZSG may be less detrimental in these countries. These findings extend previous knowledge about predictors of life satisfaction and suggest that social beliefs might also be an important factor that influences subjective well-being. The contribution of the study is that the separate treatment of life satisfaction and positive and negative affect may be helpful in many research situations, particularly from a cross-cultural perspective

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore