1,017 research outputs found

    The Nekrasov Conjecture for Toric Surfaces

    Full text link
    The Nekrasov conjecture predicts a relation between the partition function for N=2 supersymmetric Yang-Mills theory and the Seiberg-Witten prepotential. For instantons on R^4, the conjecture was proved, independently and using different methods, by Nekrasov-Okounkov, Nakajima-Yoshioka, and Braverman-Etingof. We prove a generalized version of the conjecture for instantons on noncompact toric surfaces.Comment: 38 pages; typos corrected, references added, minor changes (e.g. minor change of convention in Definition 5.13, 5.19, 6.5

    Effective Finite Temperature Partition Function for Fields on Non-Commutative Flat Manifolds

    Get PDF
    The first quantum correction to the finite temperature partition function for a self-interacting massless scalar field on a DD-dimensional flat manifold with pp non-commutative extra dimensions is evaluated by means of dimensional regularization, suplemented with zeta-function techniques. It is found that the zeta function associated with the effective one-loop operator may be nonregular at the origin. The important issue of the determination of the regularized vacuum energy, namely the first quantum correction to the energy in such case is discussed.Comment: amslatex, 14 pages, to appear in Phys. Rev.

    Early Stages of Homopolymer Collapse

    Full text link
    Interest in the protein folding problem has motivated a wide range of theoretical and experimental studies of the kinetics of the collapse of flexible homopolymers. In this Paper a phenomenological model is proposed for the kinetics of the early stages of homopolymer collapse following a quench from temperatures above to below the theta temperature. In the first stage, nascent droplets of the dense phase are formed, with little effect on the configurations of the bridges that join them. The droplets then grow by accreting monomers from the bridges, thus causing the bridges to stretch. During these two stages the overall dimensions of the chain decrease only weakly. Further growth of the droplets is accomplished by the shortening of the bridges, which causes the shrinking of the overall dimensions of the chain. The characteristic times of the three stages respectively scale as the zeroth, 1/5 and 6/5 power of the the degree of polymerization of the chain.Comment: 11 pages, 3 figure

    BAs and boride III-V alloys

    Full text link
    Boron arsenide, the typically-ignored member of the III-V arsenide series BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an X_1c-like indirect band gap, and its bond charge is distributed almost equally on the two atoms in the unit cell, exhibiting nearly perfect covalency. The reasons for these are tracked down to the anomalously low atomic p orbital energy in the boron and to the unusually strong s-s repulsion in BAs relative to most other III-V compounds. We find unexpected valence band offsets of BAs with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is significantly higher than that of AlAs, despite the much smaller bond length of BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects result from the unusually strong mixing of the cation and anion states at the VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and composition-independent band gap bowing. This means that while addition of small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing enthalpies which are smaller than in GaN-GaAs alloys. The unique features of boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for publication in Phys. Rev. B. Scheduled to appear Oct. 15 200

    On the Geodesic Nature of Wegner's Flow

    Full text link
    Wegner's method of flow equations offers a useful tool for diagonalizing a given Hamiltonian and is widely used in various branches of quantum physics. Here, generalizing this method, a condition is derived, under which the corresponding flow of a quantum state becomes geodesic in a submanifold of the projective Hilbert space, independently of specific initial conditions. This implies the geometric optimality of the present method as an algorithm of generating stationary states. The result is illustrated by analyzing some physical examples.Comment: 8 pages, no figures. The version published in Foundations of Physic

    Economic assessment of use of pond ash in pavements

    Get PDF
    The paper introduces a new type of industrial waste-based subbase material which can replace conventional subbase material (CSM) in pavement construction. Utilisation of this industrial waste, namely pond coal ash produced from a thermal power plant in road construction will help to reduce the disposal problem of this waste and also will help to reduce the problem of scarcity of CSM. Lime and fibre were also added to the pond ash at various percentages to improve the suitability of this type of mix as subbase material. The optimum service life of pavement is studied with the help of numerical modelling and the cost benefit is also presented in the current study. The study reveals that stabilisation of the coal ash with 2% lime may produce an optimal material and, even though a greater thickness may be required to deliver the same pavement performance, direct cost savings of around 10% may be achieved in addition to less easily quantifiable environmental benefits. Design charts are provided to exploit the findings

    Chromosomal aberrations in mouse lymphocytes exposed in vitro and in vivo to benzidine and 5 related aromatic amines

    Full text link
    Mouse lymphocytes were exposed in vitro for 2 h or in vivo for 24 h to benzidine and related aromatic amines to test for chromosome aberrations (CA) and mitotic indices. Uninduced mouse S9 was used to activate the amines for the in vitro tests to be consistent with the in vivo tests. Contrary to a previous report, no difference could be established in the genotoxicity of benzidine following activation with uninduced S9 compared to induced S9. There were concentration related increases in CA for benzidine and all the amines in vitro except for 4,4'-diaminostilbene which exhibited the greatest cellular toxicity towards cultured lymphocytes. Benzidine and its derivatives showed significant increases in CA in vivo compared to its negative control. The CA values for 4-aminostilbene were significantly higher than the other amines in both in vivo and in vitro studies. These genotoxicity results for 4-aminostilbene are consistent with our previous report of the pronounced CA effects in murine bone-marrow cells but would not be predicted from Salmonella mutagenicity tests.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31873/1/0000823.pd

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore