1,745 research outputs found

    Constraints on the pMSSM from searches for squarks and gluinos by ATLAS

    Get PDF
    We study the impact of the jets and missing transverse momentum SUSY analyses of the ATLAS experiment on the phenomenological MSSM (pMSSM). We investigate sets of SUSY models with a flat and logarithmic prior in the SUSY mass scale and a mass range up to 1 and 3 TeV, respectively. These models were found previously in the study 'Supersymmetry without Prejudice'. Removing models with long-lived SUSY particles, we show that 99% of 20000 randomly generated pMSSM model points with a flat prior and 87% for a logarithmic prior are excluded by the ATLAS results. For models with squarks and gluinos below 600 GeV all models of the pMSSM grid are excluded. We identify SUSY spectra where the current ATLAS search strategy is less sensitive and propose extensions to the inclusive jets search channel

    Immunoprecipitation methods impact the peptide repertoire in immunopeptidomics

    Get PDF
    IntroductionMass spectrometry-based immunopeptidomics is the only unbiased method to identify naturally presented HLA ligands, which is an indispensable prerequisite for characterizing novel tumor antigens for immunotherapeutic approaches. In recent years, improvements based on devices and methodology have been made to optimize sensitivity and throughput in immunopeptidomics. However, developments in ligand isolation, mass spectrometric analysis, and subsequent data processing can have a marked impact on the quality and quantity of immunopeptidomics data.MethodsIn this work, we compared the immunopeptidome composition in terms of peptide yields, spectra quality, hydrophobicity, retention time, and immunogenicity of two established immunoprecipitation methods (column-based and 96-well-based) using cell lines as well as primary solid and hematological tumor samples.ResultsAlthough, we identified comparable overall peptide yields, large proportions of method-exclusive peptides were detected with significantly higher hydrophobicity for the column-based method with potential implications for the identification of immunogenic tumor antigens. We showed that column preparation does not lose hydrophilic peptides in the hydrophilic washing step. In contrast, an additional 50% acetonitrile elution could partially regain lost hydrophobic peptides during 96-well preparation, suggesting a reduction of the bias towards the column-based method but not completely equalizing it.DiscussionTogether, this work showed how different immunoprecipitation methods and their adaptions can impact the peptide repertoire of immunopeptidomic analysis and therefore the identification of potential tumor-associated antigens

    Class I major histocompatibility complexes loaded by a periodate trigger

    Get PDF
    Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptide−MHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptide−MHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptide−MHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands

    NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence

    Get PDF
    Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately would be a major undertaking.Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and generates quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune epitopes and endogenous presented peptides, all successfully validate this method. We further demonstrate that the method can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly informative novel MHC molecules for future biochemical and functional analysis.Encompassing all HLA molecules, this high-throughput computational method lends itself to epitope searches that are not only genome- and pathogen-wide, but also HLA-wide. Thus, it offers a truly global analysis of immune responses supporting rational development of vaccines and immunotherapy. It also promises to provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan

    Diffraction from the beta-sheet crystallites in spider silk

    Get PDF
    We analyze the wide angle x-ray scattering from oriented spider silk fibers in terms of a quantitative scattering model, including both structural and statistical parameters of the β\beta-sheet crystallites of spider silk in the amorphous matrix. The model is based on kinematic scattering theory and allows for rather general correlations of the positional and orientational degrees of freedom, including the crystallite's size, composition and dimension of the unit cell. The model is evaluated numerically and compared to experimental scattering intensities allowing us to extract the geometric and statistical parameters. We show explicitly that for the experimentally found mosaicity (width of the orientational distribution) inter-crystallite effects are negligible and the data can be analyzed in terms of single crystallite scattering, as is usually assumed in the literature.Comment: 15 pages, 14 figures, on average 0.93 figures per pag

    AntigenDB: an immunoinformatics database of pathogen antigens

    Get PDF
    The continuing threat of infectious disease and future pandemics, coupled to the continuous increase of drug-resistant pathogens, makes the discovery of new and better vaccines imperative. For effective vaccine development, antigen discovery and validation is a prerequisite. The compilation of information concerning pathogens, virulence factors and antigenic epitopes has resulted in many useful databases. However, most such immunological databases focus almost exclusively on antigens where epitopes are known and ignore those for which epitope information was unavailable. We have compiled more than 500 antigens into the AntigenDB database, making use of the literature and other immunological resources. These antigens come from 44 important pathogenic species. In AntigenDB, a database entry contains information regarding the sequence, structure, origin, etc. of an antigen with additional information such as B and T-cell epitopes, MHC binding, function, gene-expression and post translational modifications, where available. AntigenDB also provides links to major internal and external databases. We shall update AntigenDB on a rolling basis, regularly adding antigens from other organisms and extra data analysis tools. AntigenDB is available freely at http://www.imtech.res.in/raghava/antigendb and its mirror site http://www.bic.uams.edu/raghava/antigendb

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore