71 research outputs found

    Influence of FADS Polymorphisms on Tracking of Serum Glycerophospholipid Fatty Acid Concentrations and Percentage Composition in Children

    Get PDF
    Tracking of fatty acid (FA) contribution to plasma or serum lipids over time was shown in children and adults. However, the potential role of FADS gene variants has not been investigated. Serum GP FA composition of 331 children aged 2 and 6 years, participating in an ongoing birth cohort study, was analyzed. Correlation coefficients were estimated to describe FA tracking over 4 years and to assess the influence of FADS variants on tracking. We found low to moderate tracking (r = 0.12-0.49) of FA compositions and concentration between 2 and 6 years. Concentration changes of total monounsaturated FA and total saturated FA over time correlated closely (r = 0.79) but percentage values were unrelated (r = -0.02). Tracking for n-6 long chain polyunsaturated fatty acid (LC-PUFA) concentrations was lower in subjects homozygous for the major allele of FADS variants and higher in carriers of at least one minor allele, whereas for total n-3 LC-PUFA concentrations and compositions this was vice versa. For individual n-3 PUFA inconsistent results were found. Serum GP FA composition shows low to moderate tracking over 4 years with a higher tracking for LC-PUFA metabolites than for their precursor FA. Serum PUFA levels and their tracking seem to be more influenced by lipid and lipoprotein metabolism than by FA specific pathways

    Influence of FADS Polymorphisms on Tracking of Serum Glycerophospholipid Fatty Acid Concentrations and Percentage Composition in Children

    Get PDF
    BACKGROUND: Tracking of fatty acid (FA) contribution to plasma or serum lipids over time was shown in children and adults. However, the potential role of FADS gene variants has not been investigated. METHODS AND PRINCIPAL FINDINGS: Serum GP FA composition of 331 children aged 2 and 6 years, participating in an ongoing birth cohort study, was analyzed. Correlation coefficients were estimated to describe FA tracking over 4 years and to assess the influence of FADS variants on tracking. We found low to moderate tracking (r = 0.12-0.49) of FA compositions and concentration between 2 and 6 years. Concentration changes of total monounsaturated FA and total saturated FA over time correlated closely (r = 0.79) but percentage values were unrelated (r = -0.02). Tracking for n-6 long chain polyunsaturated fatty acid (LC-PUFA) concentrations was lower in subjects homozygous for the major allele of FADS variants and higher in carriers of at least one minor allele, whereas for total n-3 LC-PUFA concentrations and compositions this was vice versa. For individual n-3 PUFA inconsistent results were found. CONCLUSIONS AND SIGNIFICANCE: Serum GP FA composition shows low to moderate tracking over 4 years with a higher tracking for LC-PUFA metabolites than for their precursor FA. Serum PUFA levels and their tracking seem to be more influenced by lipid and lipoprotein metabolism than by FA specific pathways

    Early Influences of Nutrition on Postnatal Growth

    Get PDF
    Health and nutrition modulate postnatal growth. The availability ofamino acids and energy, and insulin and insulin-like growth factor-I(IGF-I) regulates early growth through the mTOR pathway. Amino acids andglucose also stimulate the secretion of IGF-I and insulin. Postnatalgrowth induces lasting, programming effects on later body size andadiposity in animals and in human observational studies. Rapid weightgain in infancy and the first 2 years was shown to predict increasedobesity risk in childhood and adulthood. Breastfeeding leads to lesserhigh weight gain in infancy and reduces obesity risk in later life byabout 20%, presumably partly due to the lower protein supply with humanmilk than conventional infant formula. In a large randomized clinicaltrial, we tested the hypothesis that reduced infant formula proteincontents lower insulin-releasing amino acid concentrations and therebydecrease circulating insulin and IGF-I levels, resulting in lesser earlyweight gain and reduced later obesity risk (the ‘Early ProteinHypothesis’). The results demonstrate that lowered protein in infantformula induces similar - but not equal - metabolic and endocrineresponses and normalizes weight and BMI relative to breastfed controlsat the age of 2 years. The results available should lead to enhancedefforts to actively promote, protect and support breastfeeding. Forinfants that are not breastfed or not fully breastfed, the use of infantformulas with lower protein contents but high protein quality appearspreferable. Cows’ milk as a drink provides high protein intake andshould be avoided in infancy

    Variants of the FADS1 FADS2 Gene Cluster, Blood Levels of Polyunsaturated Fatty Acids and Eczema in Children within the First 2 Years of Life

    Get PDF
    Association of genetic-variants in the FADS1-FADS2-gene-cluster with fatty-acid-composition in blood of adult-populations is well established. We analyze this genetic-association in two children-cohort-studies. In addition, the association between variants in the FADS-gene-cluster and blood-fatty-acid-composition with eczema was studied. Data of two population-based-birth-cohorts in The Netherlands and Germany (KOALA, LISA) were pooled (n = 879) and analyzed by (logistic) regression regarding the mutual influence of single-nucleotide-polymorphisms (SNPs) in the FADS-gene-cluster (rs174545, rs174546, rs174556, rs174561, rs3834458), on polyunsaturated fatty acids (PUFA) in blood and parent-reported eczema until the age of 2 years. All SNPs were highly significantly associated with all PUFAs except for alpha-linolenic-acid and eicosapentaenoic-acid, also after correction for multiple-testing. All tested SNPs showed associations with eczema in the LISA-study, but not in the KOALA-study. None of the PUFAs was significantly associated with eczema neither in the pooled nor in the analyses stratified by study-cohort. PUFA-composition in young children's blood is under strong control of the FADS-gene-cluster. Inconsistent results were found for a link between these genetic-variants with eczema. PUFA in blood was not associated with eczema. Thus the hypothesis of an inflammatory-link between PUFA and eczema by the metabolic-pathway of LC-PUFAs as precursors for inflammatory prostaglandins and leukotrienes could not be confirmed by these data

    Gestational Weight Gain and Body Mass Index in Children: Results from Three German Cohort Studies

    Get PDF
    Previous studies suggested potential priming effects of gestational weight gain (GWG) on offspring's body composition in later life. However, consistency of these effects in normal weight, overweight and obese mothers is less clear. We combined the individual data of three German cohorts and assessed associations of total and excessive GWG (as defined by criteria of the Institute of Medicine) with offspring's mean body mass index (BMI) standard deviation scores (SDS) and overweight at the age of 5-6 years (total: n = 6,254). Quantile regression was used to examine potentially different effects on different parts of the BMI SDS distribution. All models were adjusted for birth weight, maternal age and maternal smoking during pregnancy and stratified by maternal pre-pregnancy weight status. In adjusted models, positive associations of total and excessive GWG with mean BMI SDS and overweight were observed only in children of non- overweight mothers. For example, excessive GWG was associated with a mean increase of 0.08 (95% CI: 0.01, 0.15) units of BMI SDS (0.13 (0.02, 0.24) kg/m(2) of 'real' BMI) in children of normal-weight mothers. The effects of total and excessive GWG on BMI SDS increased for higher- BMI children of normal-weight mothers. Increased GWG is likely to be associated with overweight in offspring of non-overweight mothers

    FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies

    Get PDF
    BACKGROUND: Elevated cholesterol levels in children can be a risk factor for cardiovascular diseases in later life. In adults, it has been shown that blood lipid levels are strongly influenced by polymorphisms in the fatty acid desaturase (FADS) gene cluster in addition to nutritional and other exogenous and endogenous determinants. Our aim was to investigate whether lipid levels are determined by the FADS genotype already in children and whether this association interacts with dietary intake of n-3 fatty acids. METHODS: The analysis was based on data of 2006 children from two German prospective birth cohort studies. Total cholesterol, HDL, LDL and triglycerides were measured at 10 years of age. Six single nucleotide polymorphisms (SNPs) of the FADS gene cluster were genotyped. Dietary n-3 fatty acid intake was assessed by food frequency questionnaire. Linear regression modeling was used to assess the association between lipid levels, n-3 fatty acid intake and FADS genotype. RESULTS: Individuals carrying the homozygous minor allele had lower levels of total cholesterol [means ratio (MR) ranging from 0.96 (p = 0.0093) to 0.98 (p = 0.2949), depending on SNPs] and LDL [MR between 0.94 (p = 0.0179) and 0.97 (p = 0.2963)] compared to homozygous major allele carriers. Carriers of the heterozygous allele showed lower HDL levels [β between -0.04 (p = 0.0074) to -0.01 (p = 0.3318)] and higher triglyceride levels [MR ranging from 1.06 (p = 0.0065) to 1.07 (p = 0.0028)] compared to homozygous major allele carriers. A higher n-3 PUFA intake was associated with higher concentrations of total cholesterol, LDL, HDL and lower triglyceride levels, but these associations did not interact with the FADS1 FADS2 genotype. CONCLUSION: Total cholesterol, HDL, LDL and triglyceride concentrations may be influenced by the FADS1 FADS2 genotype already in 10 year old children. Genetically determined blood lipid levels during childhood might differentially predispose individuals to the development of cardiovascular diseases later in life

    DNA methylation and body mass index from birth to adolescence : meta-analyses of epigenome-wide association studies

    Get PDF
    Background DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. Methods We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. Results DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P <1.06 x 10(-7), with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth P-enrichment = 1; childhood P-enrichment = 2.00 x 10(-4); adolescence P-enrichment = 2.10 x 10(-7)). Conclusions There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.Peer reviewe

    Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits

    Get PDF
    The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located nearNEDD4LandSLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (R(g)ranging from 0.11 to 0.76, P-values Author summary Although twin studies have shown that body mass index (BMI) is highly heritable, many common genetic variants involved in the development of BMI have not yet been identified, especially in children. We studied associations of more than 40 million genetic variants with childhood BMI in 61,111 children aged between 2 and 10 years. We identified 25 genetic variants that were associated with childhood BMI. Two of these have not been implicated for BMI previously, located close to the genesNEDD4LandSLC45A3. We also show that the genetic background of childhood BMI overlaps with that of birth weight, adult BMI, waist-to-hip-ratio, diastolic blood pressure, type 2 diabetes, and age at menarche. Our results suggest that the biological processes underlying childhood BMI largely overlap with those underlying adult BMI. However, the overlap is not complete. Additionally, the genetic backgrounds of childhood BMI and other cardio-metabolic phenotypes are overlapping. This may mean that the associations of childhood BMI and later cardio-metabolic outcomes are partially explained by shared genetics, but it could also be explained by the strong association of childhood BMI with adult BMI.Peer reviewe

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies

    Get PDF
    Background DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. Methods We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. Results DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 x 10(-7), with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth P-enrichment = 1; childhood P-enrichment = 2.00 x 10(-4); adolescence P-enrichment = 2.10 x 10(-7)). Conclusions There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity
    corecore