31 research outputs found

    Single-Atom Catalysis in Organic Synthesis

    Get PDF
    Single-atom catalysts hold the potential to significantly impact the chemical sector, pushing the boundaries of catalysis in new, uncharted directions. These materials, featuring isolated metal species ligated on solid supports, can exist in many coordination environments, all of which have shown important functions in specific transformations. Their emergence has also provided exciting opportunities for mimicking metalloenzymes and bridging the gap between homogeneous and heterogeneous catalysis. This review outlines the impressive progress made in recent years regarding the use of single-atom catalysts in organic synthesis. We also illustrate potential knowledge gaps in the search for more sustainable, earth-abundant single-atom catalysts for synthetic applications

    Structural Effects of Metal Single-Atom Catalysts for Enhanced Photocatalytic Degradation of Gemfibrozil

    Get PDF
    The development of efficient catalysts is a highly necessary but challenging task within the field of environmental water remediation. Single-atom catalysts are promising nanomaterials within this respect, but in-depth studies encompassing this class of catalysts remain elusive. In this work, we systematically study the degradation of gemfibrozil, a persistent pollutant, on a series of carbon nitride photocatalysts, investigating both the effect of (i) catalyst textural properties and (ii) metal single atoms on the contaminant degradation. Tests in the absence of the catalyst result in negligible degradation rates, confirming the stability of the contaminant when dispersed in water. Then, photocatalytic tests at optimal pH, solvent, and wavelength reveal a correlation between the support surface area and the degradation. This points to the role of carbon nitride surface nanostructure on gemfibrozil degradation. In particular, the use of silver on mesoporous carbon nitride single-atom catalyst (Ag@mpgC(3)N(4)) leads to an unprecedented degradation of gemfibrozil (>90% within 60 min). The possible degradation intermediates and products were identified by mass spectrometry and were inert by cytotoxicity evaluation. We anticipate that, with further refinement and customization, the carbon nitride catalysts reported herein may find broad applications for light-driven degradation of other contaminants of emerging concern

    Nanostructured Carbon Nitride for Continuous-Flow Trifluoromethylation of (Hetero)arenes

    Get PDF
    Efficient catalytic methods for the trifluoromethy-lation of (hetero)arenes are of particular importance in organic and pharmaceutical manufacturing. However, many existing protocols rely on toxic reagents and expensive or sterically hindered homogeneous catalysts. One promising alternative to conduct this transformation involves the use of carbon nitride, a non-toxic photocatalyst prepared from inexpensive precursors. Nonetheless, there is still little understanding regarding the interplay between physicochemical features of this photocatalyst and the correspond-ing effects on the reaction rate. In this work, we elucidate the role of carbon nitride nanostructuring on the catalytic performance, understanding the effect of surface area and band gap tuning via metal insertion. Our findings provide new insights into the structure-function relationships of the catalyst, which we exploit to design a continuous-flow process that maximizes catalyst-light interaction, facilitates catalyst reusability, and enables intensified reaction scale-up. This is particularly significant given that photocatalyzed batch protocols often face challenges during industrial exploitation. Finally, we extrapolate the rapid and simplified continuous-flow method to the synthesis of a variety of functionalized heteroaromatics, which have numerous applications in the pharmaceutical and fine chemical industries

    Enhanced flow synthesis of small molecules by in-line integration of sequential catalysis and benchtop twin-column continuous chromatography

    Get PDF
    We report an improved approach for the integration of flow synthesis and continuous chromatography, for applications in the end-to-end preparation of pharmaceutically-relevant small molecules. It involves the combination of sequential microreactors and twin-column counter-current chromatography based on the often-used C18 columns. The column loading method ensures that the product breaking through a fully loaded first column is loaded onto the second one, avoiding waste of precious material and technological complexity associated with the use of four-to-six columns typical of simulated moving bed chromatography. The system was applied to synthesize biphenyl via Suzuki–Miyaura reaction, and was also demonstrated for other structurally-different compounds. Compared to the discontinuous and other traditional approaches, our method leads to higher isolated yields (ca. +60%), higher productivity (ca. +30%), and reduced solvent consumption (ca. −80%). A circularity and life-cycle analysis was also conducted to demonstrate the environmental benefits of the flow process

    Molecular epidemiology of a hepatitis C virus epidemic in a haemodialysis unit: outbreak investigation and infection outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV is a leading cause of liver chronic diseases all over the world. In developed countries the highest prevalence of infection is reported among intravenous drug users and haemodialysis (HD) patients. The present report is to identify the pathway of HCV transmission during an outbreak of HCV infection in a privately run haemodialysis (HD) unit in Italy in 2005.</p> <p>Methods</p> <p>Dynamics of the outbreak and infection clinical outcomes were defined through an ambi-directional cohort study. Molecular epidemiology techniques were used to define the relationships between the viral variants infecting the patients and confirm the outbreak. Risk analysis and auditing procedures were carried out to define the transmission pathway(s).</p> <p>Results</p> <p>Of the 50 patients treated in the HD unit 5 were already anti-HCV positive and 13 became positive during the study period (AR = 28.9%). Phylogenic analysis identified that, all the molecularly characterized incident cases (10 out of 13), were infected with the same viral variant of one of the prevalent cases. The multivariate analysis and the auditing procedure disclosed a single event of multi-dose vials heparin contamination as the cause of transmission of the infection in 11 out of the 13 incident cases; 2 additional incident cases occurred possibly as a result of inappropriate risk management.</p> <p>Discussion</p> <p>More than 30% of all HCV infections in developed countries results from poor application of standard precautions during percutaneous procedures. Comprehensive strategy which included: educational programmes, periodical auditing on standard precaution, use of single-dose vials whenever possible, prospective surveillance for blood-borne infections (including a system of prompt notification) and risk assessment/management dedicated staff are the cornerstone to contain and prevent outbreaks in HD</p> <p>Conclusions</p> <p>The outbreak described should serve as a reminder to HD providers that patients undergoing dialysis are at risk for HCV infection and that HCV may be easily transmitted whenever standard precautions are not strictly applied.</p

    Polygenic burden in focal and generalized epilepsies

    Get PDF
    Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japaneseancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64 710-15; Cleveland: P = 2.85 710-4; Finnish-ancestry Epi25: P = 1.80 710-4) or population controls (Epi25: P = 2.35 710-70; Cleveland: P = 1.43 710-7; Finnish-ancestry Epi25: P = 3.11 710-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99 710-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74 710-19; Cleveland: P = 1.69 710-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60 710-15; Cleveland: P = 1.39 710-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P &lt; 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P &lt; 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
    corecore