49 research outputs found

    Rat Stem-Cell Factor Induces Splenocytes Capable Of Regenerating The Thymus

    Get PDF
    Cytokine regulation of prethymic T-lymphoid progenitor-cell proliferation and/or differentiation has not been well-defined, although much is known of cytokine regulation of hemopoietic stem- and progenitor-cell development. Here we use a recently identified hemopoietic growth factor, stem-cell factor (SCF) (a form of the c-kit ligand), and a transplant model of thymocyte regeneration to assess the effect of SCF on the in vivo generation of prethymic, thymocyte progenitor-cell activity. We show that recombinant rat SCF (rrSCF164 administered to weanling rats selectively induces an increase in thymocyte progenitor activity in the spleens of treated rats as compared to rats treated with vehicle, polyethylene glycol (PEG)-conjugated rat albumin, or recombinant human granulocyte colony-stimulating factor (rhG-CSF). These data demonstrate that administration of SCF in vivo affects extrathymic-origin thymocyte regenerating cells and may influence, directly or indirectly, early prethymic stages of T-cell lymphopoiesis in addition to its known effect on early stages of myelopoiesis and erythropoiesis

    Purinergic inhibition of Na+,K+,Cl− cotransport in C11-MDCK cells: Role of stress-activated protein kinases

    Get PDF
    Previously, we observed that sustained activation of P2Y1 leads to inhibition of Na+,K+,Cl− cotransport (NKCC) in C11 cells resembling intercalated cells from collecting ducts of the Madin-Darby canine kidney. This study examined the role of stress-activated protein kinases (SAPK) in NKCC inhibition triggered by purinergic receptors. Treatment of C11 cells with ATP led to sustained phosphorylation of SAPK such as JNK and p38. Activation of these kinases also occurred in anisomycin-treated cells. Surprisingly, we observed that compounds SP600125 and SB202190, known as potent inhibitors of JNK and p38 in cell-free systems, activated rather than inhibited phosphorylation of the kinases in C11 cells. Importantly, similarly to ATP, all the above-listed activators of JNK and p38 phosphorylation inhibited NKCC. Thus, our results suggest that activation of JNK and/or p38 contributes to NKCC suppression detected in intercalated-like cells from distal tubules after their exposure to P2Y1 agonists

    Tumor macroenvironment and metabolism

    Get PDF
    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%–20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient’s outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described

    Epoxide-Opening Cascades in the Synthesis of Polycyclic Polyether Natural Products

    Get PDF
    The structural features of polycyclic polyether natural products can, in some cases, be traced to their biosynthetic origin. However in case that are less well understood, only biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades are proposed. We summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers (see scheme) and related natural products. The group of polycyclic polyether natural products is of special interest owing to the fascinating structure and biological effects displayed by its members. The latter includes potentially therapeutic antibiotic, antifungal, and anticancer properties, and extreme lethality. The polycyclic structural features of this class of compounds can, in some cases, be traced to their biosynthetic origin, but in others that are less well understood, only to proposed biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers and related natural products

    Retinoblastoma protein in human renal cell carcinoma in relation to alterations in G1/S regulatory proteins

    No full text
    The retinoblastoma gene product (pRb) is the main substrate for cyclin-dependent kinases (CDKs) during the G1/S transition. Aberrations in cell cycle regulatory proteins, which have been observed in many malignancies, can theoretically cause increased phosphorylation of pRb due to unbalanced CDK activities. The expression and phosphorylation of pRb and potential associations to cell cycle aberrations in renal cell carcinomas (RCC) has only partly been clarified. We therefore evaluated the presence of pRb and the level of pRb-phosphorylation in 216 RCCs arranged in tissue microarrays by using different pRb-antibodies, including pRb-phosphospecific antibodies. Most RCCs (95%) expressed pRb, while cases with the low pRb levels, potentially indicative for pRb-inactivation, were few. In order to detect secondary alterations to a potential pRb-inactivation, the p 16 expression was also monitored. None of the tumors exhibited increased p 16 levels, confirming that pRb-inactivation is rare in RCC. Phosphorylated pRb was detected in approximately 50% of the RCCs, using Western blotting or immunohistochemistry. The immunohistochemical ppRb(ser807/811) levels were associated with high proliferation, cyclin D1, cyclin E and p27 protein content. Surprisingly, there was no association between pRb-phosphorylation and clinicopathological data. In summary, pRb seemed to be functional and aberrations in G1/S-regulatory proteins were associated with increased phosphorylation of pRb and proliferation. The data supports that pRb might be one of the main cell cycle regulators in RCC. (C) 2003 Wiley-Liss, Inc
    corecore