804 research outputs found

    IL-21 shapes germinal center polarization via light zone B cell selection and cyclin D3 upregulation

    Get PDF
    Germinal center (GC) dysregulation has been widely reported in the context of autoimmunity. Here, we show that interleukin 21 (IL-21), the archetypal follicular helper T cell (Tfh) cytokine, shapes the scale and polarization of spontaneous chronic autoimmune as well as transient immunization-induced GC. We find that IL-21 receptor deficiency results in smaller GC that are profoundly skewed toward a light zone GC B cell phenotype and that IL-21 plays a key role in selection of light zone GC B cells for entry to the dark zone. Light zone skewing has been previously reported in mice lacking the cell cycle regulator cyclin D3. We demonstrate that IL-21 triggers cyclin D3 upregulation in GC B cells, thereby tuning dark zone inertial cell cycling. Lastly, we identify Foxo1 regulation as a link between IL-21 signaling and GC dark zone formation. These findings reveal new biological roles for IL-21 within GC and have implications for autoimmune settings where IL-21 is overproduced

    La enseñanza y el aprendizaje de la geometría en 4° y 5° de básica primaria

    Get PDF
    El proyecto pretende rescatar la ensenanza y el aprendizaje de la geometria en los grados 4o y 5o, a traves del diseno e implementacion de una estrategia didactica apoyada en el modelo de razonamiento geometrico de Van Hiele y en la situacion de soluciones problema

    High expression of antiviral proteins in mucosa from individuals exhibiting resistance to human immunodeficiency virus

    Get PDF
    ABSTARCT: Several soluble factors have been reported to have the capacity of inhibiting HIV replication at different steps of the virus life cycle, without eliminating infected cells and through enhancement of specific cellular mechanisms. Yet, it is unclear if these antiviral factors play a role in the protection from HIV infection or in the control of viral replication. Here we evaluated two cohorts: i) one of 58 HIV-exposed seronegative individuals (HESNs) who were compared with 59 healthy controls (HCs), and ii) another of 13 HIV-controllers who were compared with 20 HIV-progressors. Peripheral blood, oral and genital mucosa and gut-associated lymphoid tissue (GALT) samples were obtained to analyze the mRNA expression of ELAFIN, APOBEC3G, SAMHD1, TRIM5α, RNase 7 and SerpinA1 using real-time PCR. RESULTS: HESNs exhibited higher expression of all antiviral factors in peripheral blood mononuclear cells (PBMCs), oral or genital mucosa when compared with HCs. Furthermore, HIV-controllers exhibited higher levels of SerpinA1 in GALT. CONCLUSIONS: These findings suggest that the activity of these factors is compartmentalized and that these proteins have a predominant role depending on the tissue to avoid the infection, reduce the viral load and modulate the susceptibility to HIV infection

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Interrogating open issues in cancer precision medicine with patient-derived xenografts

    Full text link

    Cerium dioxide nanoparticles modulate antioxidant defences and change vascular response in the human saphenous vein

    No full text
    Nanoparticles have a promising future in biomedical applications and knowing whether they affect ex vivo vascular reactivity is a necessary step before their use in patients. In this study, we have evaluated the vascular effect of cerium dioxide nanoparticles (CeONPs) on the human saphenous vein in response to relaxing and contractile agonists. In addition, we have measured the protein expression of key enzymes related to vascular homeostasis and oxidative stress. We found that CeONPs increased expression of both SOD isoforms, and the consequent reduction of superoxide anion would enhance the bioavailability of NO explaining the increased vascular sensitivity to sodium nitroprusside in the presence of CeONPs. The NOX4 reduction induced by CeONPs may lead to lower HO synthesis associated with vasodilation through potassium channels explaining the lower vasodilation to bradykinin. In addition, we showed for the first time, that CeONPs increase the expression of ACE2 in human saphenous vein, and it may be the cause of the reduced contraction to angiotensin II. Moreover, we ruled out that CeONPs have effect on the protein expression of eNOS, sGC, BKca channels and angiotensin II receptors or modify the vascular response to noradrenaline, endothelin-1 and TXA analogue. In conclusion, CeONPs show antioxidant properties, and together with their vascular effect, they could be postulated as adjuvants for the treatment of cardiovascular diseases.This work was supported by Carlos III Health Institute (PI22/00424) and the European Regional Development Fund (ERDF ‘‘A way to build Europe’’ grant PI19/00838), by the Ministry of Health of the Valencian Regional Government (PROMETEO/2019/027), and by Universitat de València (UV-INV-AE-1544052)

    Development of smartband to monitor from home the vital signs for patients with SARS COV 2 through a mobile application from the central military hospital (HOMIL) Bogota 2020

    No full text
    After the arrival of SARS COV2 (COVID 19) many biomedical devices have been innovated to mitigate the impact of the pandemic. Despite this, none have been developed to monitor patients with mild symptoms or the asymptomatic from their homes, forcing many hospitals worldwide to send these patients home with poor surveillance measures. The main objective of this project is to monitor from the HOMIL the vital signs of COVID 19 patients, who are currently isolated in their homes. For this purpose, a biomedical device in the form of a lowcost smartband has been developed. It is linked to a mobile application connected to a database where heart rate, oxygen saturation, and temperature parameters are sent in real time. The development was proposed in phases, which involve physical design, data acquisition and processing, and subsequent trial at the HOMIL. The smartband design and the mobile application has been developed, wireless communication between sensors has been achieved. Furthermore, the plan is to provide the HOMIL with the capability of initiating emergency protocols. The use of the smartband will be encouraged in patients who have tested positive for COVID 19 through PCR and will be taken off once they test negative
    corecore