20 research outputs found

    Framework and baseline examination of the German National Cohort (NAKO)

    Get PDF
    The German National Cohort (NAKO) is a multidisciplinary, population-based prospective cohort study that aims to investigate the causes of widespread diseases, identify risk factors and improve early detection and prevention of disease. Specifically, NAKO is designed to identify novel and better characterize established risk and protection factors for the development of cardiovascular diseases, cancer, diabetes, neurodegenerative and psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases in a random sample of the general population. Between 2014 and 2019, a total of 205,415 men and women aged 19–74 years were recruited and examined in 18 study centres in Germany. The baseline assessment included a face-to-face interview, self-administered questionnaires and a wide range of biomedical examinations. Biomaterials were collected from all participants including serum, EDTA plasma, buffy coats, RNA and erythrocytes, urine, saliva, nasal swabs and stool. In 56,971 participants, an intensified examination programme was implemented. Whole-body 3T magnetic resonance imaging was performed in 30,861 participants on dedicated scanners. NAKO collects follow-up information on incident diseases through a combination of active follow-up using self-report via written questionnaires at 2–3 year intervals and passive follow-up via record linkages. All study participants are invited for re-examinations at the study centres in 4–5 year intervals. Thereby, longitudinal information on changes in risk factor profiles and in vascular, cardiac, metabolic, neurocognitive, pulmonary and sensory function is collected. NAKO is a major resource for population-based epidemiology to identify new and tailored strategies for early detection, prediction, prevention and treatment of major diseases for the next 30 years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10654-022-00890-5

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    ESBL Displace: A Protocol for an Observational Study to Identify Displacing Escherichia coli Strain Candidates from ESBL-Colonized Travel Returners Using Phenotypic, Genomic Sequencing and Metagenome Analysis

    No full text
    Introduction: Invading extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-PE), non-ESBL E. coli, and other bacteria form a complex environment in the gut. The duration and dynamics of ESBL-PE colonization varies among individuals. Understanding the factors associated with colonization may lead to decolonization strategies. In this study, we aim to identify (i) single E. coli strains and (ii) microbiome networks that correlate with retention or decline of colonization, and (iii) pan-sensitive E. coli strains that potentially could be used to displace ESBL-PE during colonization. Methods and analysis: We recruit healthy travellers to Southeast Asia for a one-year prospective observational follow-up study. We collect and biobank stool, serum, and peripheral blood mononuclear cells (PBMCs) at predefined timepoints. Additional information is collected with questionnaires. We determine the colonization status with ESBL-PE and non-ESBL E. coli and quantify cell densities in stools and ratios over time. We characterize multiple single bacterial isolates per patient and timepoint using whole genome sequencing (WGS) and 16S/ITS amplicon-based and shotgun metagenomics. We determine phylogenetic relationships between isolates, antimicrobial resistance (AMR; phenotypic and genotypic), and virulence genes. We describe the bacterial and fungal stool microbiome alpha and beta diversity on 16S/ITS metagenomic data. We describe patterns in microbiome dynamics to identify features associated with protection or risk of ESBL-PE colonization. Ethics and dissemination: The study is registered (clinicaltrials.gov; NCT04764500 on 09/02/2019) and approved by the Ethics Committee (EKNZ project ID 2019-00044). We will present anonymized results at conferences and in scientific journals. Bacterial sequencing data will be shared via publicly accessible databases according to FAIR principles

    ESBL Displace: A Protocol for an Observational Study to Identify Displacing Escherichia coli Strain Candidates from ESBL-Colonized Travel Returners Using Phenotypic, Genomic Sequencing and Metagenome Analysis

    No full text
    Introduction: Invading extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-PE), non-ESBL E. coli, and other bacteria form a complex environment in the gut. The duration and dynamics of ESBL-PE colonization varies among individuals. Understanding the factors associated with colonization may lead to decolonization strategies. In this study, we aim to identify (i) single E. coli strains and (ii) microbiome networks that correlate with retention or decline of colonization, and (iii) pan-sensitive E. coli strains that potentially could be used to displace ESBL-PE during colonization. Methods and analysis: We recruit healthy travellers to Southeast Asia for a one-year prospective observational follow-up study. We collect and biobank stool, serum, and peripheral blood mononuclear cells (PBMCs) at predefined timepoints. Additional information is collected with questionnaires. We determine the colonization status with ESBL-PE and non-ESBL E. coli and quantify cell densities in stools and ratios over time. We characterize multiple single bacterial isolates per patient and timepoint using whole genome sequencing (WGS) and 16S/ITS amplicon-based and shotgun metagenomics. We determine phylogenetic relationships between isolates, antimicrobial resistance (AMR; phenotypic and genotypic), and virulence genes. We describe the bacterial and fungal stool microbiome alpha and beta diversity on 16S/ITS metagenomic data. We describe patterns in microbiome dynamics to identify features associated with protection or risk of ESBL-PE colonization. Ethics and dissemination: The study is registered (clinicaltrials.gov; NCT04764500 on 09/02/2019) and approved by the Ethics Committee (EKNZ project ID 2019-00044). We will present anonymized results at conferences and in scientific journals. Bacterial sequencing data will be shared via publicly accessible databases according to FAIR principles.ISSN:2036-74
    corecore