139 research outputs found

    Temperature-driven heterochrony as a main evolutionary response to climate changes in conodonts

    Get PDF
    Can we predict the evolutionary response of organisms to climate changes? The direction of greatest intraspecific phenotypic variance is thought to correspond to an 'evolutionary line of least resistance', i.e. a taxon's phenotype is expected to evolve along that general direction, if not constrained otherwise. In particular, heterochrony, whereby the timing or rate of developmental processes are modified, has often been invoked to describe evolutionary trajectories and it may be advantageous to organisms when rapid adaptation is critical. Yet, to date, little is known empirically as to which covariation patterns, whether static allometry, as measured in adult forms only, or ontogenetic allometry, the basis for heterochrony, may be prevalent in what circumstances. Here, we quantify the morphology of segminiplanate conodont elements during two distinct time intervals separated by more than 130 Myr: the Devonian-Carboniferous boundary and the Carnian-Norian boundary (Late Triassic). We evidence that the corresponding species share similar patterns of intraspecific static allometry. Yet, during both crises, conodont evolution was decoupled from this common evolutionary line of least resistance. Instead, it followed heterochrony-like trajectories that furthermore appear as driven by ocean temperature. This may have implications for our interpretation of conodonts' and past marine ecosystems' response to environmental perturbations

    Multicriterion Scantling Optimization of the Midship Section of a Passenger Vessel considering IACS Requirements

    Full text link
    peer reviewedIn the scantling design of a passenger ship, minimum production cost, minimum weight and maximum moment of inertia (stiffness) are conflicting objectives. For that purpose, recent improvements were made to the LBR-5 software (French acronym of “Stiffened Panels Software”, version 5.0) to optimize the scantling of ship sections by considering production cost, weight and moment of inertia in the optimization objective function. Moreover, IACS requirements regarding bending, shearing and buckling strength are currently available in LBR-5. Until now, only raw scantling optimizations were performed with LBR-5. Thanks to new developments using heuristics, it is now possible to realize discrete optimization so that a standardized and “ready to use” set of optimum scantlings can be obtained

    Present-day deformation of the Pyrenees revealed by GPS surveying and earthquake focal mechanisms until 2011

    Get PDF
    The Pyrenean mountain range is a slowly deforming belt with continuous and moderate seismic activity. To quantify its deformation field, we present the velocity field estimated from a GPS survey of the Pyrenees spanning 18 yr. The PotSis and ResPyr networks, including a total of 85 GPS sites, were installed and first measured in 1992 and 1995 1997, respectively, and remeasured in 2008 and 2010. We obtain a deformation field with velocities less than 1 mm yr−1 across the range. The estimated velocities for individual stations do not differ significantly from zero with 95 per cent confidence. Even so, we estimate a maximum extensional horizontal strain rate of 2.0 ± 1.7 nanostrain per year in a N S direction in the western part of the range. We do not interpret the vertical displacements due to their large uncertainties. In order to compare the horizontal strain rates with the seismic activity, we analyse a set of 194 focal mechanisms using three methods: (i) the 'r' factor relating their P and T axes, (ii) the stress tensors obtained by fault slip inversion and (iii) the strain-rate tensors. Stress and strain-rate tensors are estimated for: (i) the whole data set, (ii) the eastern and western parts of the range separately, and (iii) eight zones, which are defined based on the seismicity and the tectonic patterns of the Pyrenees. Each of these analyses reveals a lateral variation of the deformation style from compression and extension in the east to extension and strike-slip in the west of the range. Although the horizontal components of the strain-rate tensors estimated from the seismic data are slightly smaller in magnitude than those computed from the GPS velocity field, they are consistent within the 2σ uncertainties. Furthermore, the orientations of their principal axes agree with the mapped active faults

    SURFACE ENGINEERING FOR PARTS MADE BY ADDITIVE MANUFACTURING

    Full text link
    peer reviewedthe surface preparation of metal parts made by additive manufacturing (AM). AM is a technology of choice for manufacturing of parts with complex shapes (heat exchangers, RF supports, optical parts…) and integrated functions such as conformal cooling channels, clips, hinges, etc. This opens the door for lightweight parts which are of prime importance for space applications. The potential of the AM technologies is however impeded by the quite rough surface finish that is observed on the as-manufactured parts. It is known that such a finish is likely to impact the performance of the parts. Several post-treatment techniques can be applied to improve the surface condition of the AM parts. However, so far, the influence of the successive post-processing steps on the final properties is not well established. Therefore, a better understanding of the impact of surface characteristics on the material behaviour is needed to expand the use of AM for high performance parts. The objective of this study, supported by ESA, is to propose and evaluate various surface finishing techniques for parts made by the AM technologies, in order to check their compatibility, evaluate their properties and derive guidelines for future applications. CRM is the prime proposer of this study and is in charge of the surface treatment and characterisations. Sirris additive manufacturing facilities are used to produce the parts. Thales Alenia Space and Walopt are included into the industrial team to provide concrete application cases. The study focuses on metals. Two metals under study are presented here: AlSi10Mg and Ti6Al4V. This paper is devoted to the early results of the first steps of surface preparation, namely material removal from the surface of the produced parts in order to improve their surface properties. As a first phase, tribo-finishing (TF) is tested on prototype parts to check its capabilities. Surface and volume parameters are analyzed, namely achieved roughness, material removal rate, location of removed material. The limitations in terms of geometry and applicability are discussed as well. These first observations should serve as guidelines for further application of AM for the design of parts used in space industry

    St. Patrick’s Day 2015 geomagnetic storm analysis based on Real Time Ionosphere Monitoring

    Get PDF
    A detailed analysis is presented for the days in March, 2015 surrounding St. Patrick’s Day 2015 geomagnetic storm, based on the existing real-time and near real-time ionospheric models (global or regional) within the group, which are mainly based on Global Navigation Satellite Systems (GNSS) and ionosonde data. For this purpose, a variety of ionospheric parameters is considered, including Total Electron Content (TEC), F2 layer critical frequency (foF2), F2 layer peak (hmF2), bottomside halfthickness (B0) and ionospheric disturbance W-index. Also, ionospheric high-frequency perturbations such as Travelling Ionospheric Disturbances (TIDs), scintillations and the impact of solar flares facing the Earth will be presented to derive a clear picture of the ionospheric dynamicsPostprint (published version

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
    corecore