282 research outputs found

    Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154469/1/fsb2fj030708fje-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154469/2/fsb2fj030708fje.pd

    Evidence for a functional role of the second C5a receptor C5L2

    Full text link
    During experimental sepsis in rodents after cecal ligation and puncture (CLP), excessive C5a is generated, leading to interactions with C5aR, loss of innate immune functions of neutrophils, and lethality. In the current study, we have analyzed the expression of the second C5a receptor C5L2, the putative â defaultâ or nonsignaling receptor for C5a. Rat C5L2 was cloned, and antibody was developed to C5L2 protein. After CLP, blood neutrophils showed a reduction in C5aR followed by its restoration, while C5L2 levels gradually increased, accompanied by the appearance of mRNA for C5L2. mRNA for C5L2 increased in lung and liver during CLP. Substantially increased C5L2 protein (defined by binding of 125Iâ antiâ C5L2 IgG) occurred in lung, liver, heart, and kidney after CLP. With the use of serum ILâ 6 as a marker for sepsis, infusion of antiâ C5aR dramatically reduced serum ILâ 6 levels, while antiâ C5L2 caused a nearly fourfold increase in ILâ 6 when compared with CLP controls treated with normal IgG. When normal blood neutrophils were stimulated in vitro with LPS and C5a, the antibodies had similar effects on release of ILâ 6. These data provide the first evidence for a role for C5L2 in balancing the biological responses to C5a.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154410/1/fsb2fj043424fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154410/2/fsb2fj043424fje-sup-0040.pd

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    The Complement Anaphylatoxin C5a Induces Apoptosis in Adrenomedullary Cells during Experimental Sepsis

    Get PDF
    Sepsis remains a poorly understood, enigmatic disease. One of the cascades crucially involved in its pathogenesis is the complement system. Especially the anaphylatoxin C5a has been shown to have numerous harmful effects during sepsis. We have investigated the impact of high levels of C5a on the adrenal medulla following cecal ligation and puncture (CLP)-induced sepsis in rats as well as the role of C5a on catecholamine production from pheochromocytoma-derived PC12 cells. There was significant apoptosis of adrenal medulla cells in rats 24 hrs after CLP, as assessed by the TUNEL technique. These effects could be reversed by dual-blockade of the C5a receptors, C5aR and C5L2. When rats were subjected to CLP, levels of C5a and norepinephrine were found to be antipodal as a function of time. PC12 cell production of norepinephrine and dopamine was significantly blunted following exposure to recombinant rat C5a in a time-dependent and dose-dependent manner. This impaired production could be related to C5a-induced initiation of apoptosis as defined by binding of Annexin V and Propidium Iodine to PC12 cells. Collectively, we describe a C5a-dependent induction of apoptotic events in cells of adrenal medulla in vivo and pheochromocytoma PC12 cells in vitro. These data suggest that experimental sepsis induces apoptosis of adrenomedullary cells, which are responsible for the bulk of endogenous catecholamines. Septic shock may be linked to these events. Since blockade of both C5a receptors virtually abolished adrenomedullary apoptosis in vivo, C5aR and C5L2 become promising targets with implications on future complement-blocking strategies in the clinical setting of sepsis
    corecore