92 research outputs found

    Determination of selected trace metals (Cr, Ni, Pb and Cd) in soils by slurry sampling GF AAS

    Get PDF
    Determination of cadmium, lead, chromium and nickel in soil samples by slurry sampling graphite furnace atomic absorption spectrometry (GFAAS) was presented. Optimization of determination conditions, stability test for slurries and metal partitioning between solid and liquid phase was investigated. The method was successfully tested by the analysis of certified reference materials

    Spontaneous polarisation of the neutral interface for valence asymmetric coulombic systems

    Full text link
    In this paper, we discuss the phenomenon of a spontaneous polarisation of a neutral hard planar interface for valence asymmetric coulombic systems. Within a field theoretical description, we account for the existence of non trivial charge density and electric potential profiles. The analysis of the phenomenon shows that the effect is related to combinatorics in relation with the existence of the two independent species cations and anions. This simple and basic feature is related to the quantum mechanical properties of the system. The theoretical results are compared with numerical simulations data and are shown to be in very good agreement, which a fortiori justifies our physical interpretation.Comment: 12 pages, 11 figure

    Capillary Condensation and Interface Structure of a Model Colloid-Polymer Mixture in a Porous Medium

    Full text link
    We consider the Asakura-Oosawa model of hard sphere colloids and ideal polymers in contact with a porous matrix modeled by immobilized configurations of hard spheres. For this ternary mixture a fundamental measure density functional theory is employed, where the matrix particles are quenched and the colloids and polymers are annealed, i.e. allowed to equilibrate. We study capillary condensation of the mixture in a tiny sample of matrix as well as demixing and the fluid-fluid interface inside a bulk matrix. Density profiles normal to the interface and surface tensions are calculated and compared to the case without matrix. Two kinds of matrices are considered: (i) colloid-sized matrix particles at low packing fractions and (ii) large matrix particles at high packing fractions. These two cases show fundamentally different behavior and should both be experimentally realizable. Furthermore, we argue that capillary condensation of a colloidal suspension could be experimentally accessible. We find that in case (ii), even at high packing fractions, the main effect of the matrix is to exclude volume and, to high accuracy, the results can be mapped onto those of the same system without matrix via a simple rescaling.Comment: 12 pages, 9 figures, submitted to PR

    A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart

    Get PDF
    Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fat-fed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels

    Ionic Interactions in Biological and Physical Systems: a Variational Treatment

    Full text link
    Chemistry is about chemical reactions. Chemistry is about electrons changing their configurations as atoms and molecules react. Chemistry studies reactions as if they occurred in ideal infinitely dilute solutions. But most reactions occur in nonideal solutions. Then everything (charged) interacts with everything else (charged) through the electric field, which is short and long range extending to boundaries of the system. Mathematics has recently been developed to deal with interacting systems of this sort. The variational theory of complex fluids has spawned the theory of liquid crystals. In my view, ionic solutions should be viewed as complex fluids. In both biology and electrochemistry ionic solutions are mixtures highly concentrated (~10M) where they are most important, near electrodes, nucleic acids, enzymes, and ion channels. Calcium is always involved in biological solutions because its concentration in a particular location is the signal that controls many biological functions. Such interacting systems are not simple fluids, and it is no wonder that analysis of interactions, such as the Hofmeister series, rooted in that tradition, has not succeeded as one would hope. We present a variational treatment of hard spheres in a frictional dielectric. The theory automatically extends to spatially nonuniform boundary conditions and the nonequilibrium systems and flows they produce. The theory is unavoidably self-consistent since differential equations are derived (not assumed) from models of (Helmholtz free) energy and dissipation of the electrolyte. The origin of the Hofmeister series is (in my view) an inverse problem that becomes well posed when enough data from disjoint experimental traditions are interpreted with a self-consistent theory.Comment: As prepared for Faraday Discussion, Pavel Jungwirth Organizer, 3 - 5 September 2012, Queens College Oxford, UK on Ion Specific Hofmeister Effects. Version 2 has significant typo corrections in eq. 1 and eq. 4, and has been reformatted to be easier to rea

    Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions

    Get PDF
    The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e ≈ 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V ≈ 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the “compact layer” and “shear plane” effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.National Science Foundation (U.S.) (contract DMS-0707641

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Attentional Control and Retrieval Induced Forgetting Self-regulation Perspective

    No full text
    Retrieval Induced Forgetting (RIF) refers to the fi nding that the retrieval of some items from memory (RP+) impairs the retrieval of related items (RP-). The RIF effect is indicated by a comparison of RP- with unrelated but also tobe- remembered items (NRP). Since RIF appears during intentional memorizing of words, therefore we checked whether it depends on attentional control (AC) involved in goal maintenance, and also if implicit evaluations of to-be-remembered (RP) contents moderate this process (causing e.g. inhibition). In three experiments, each including AC as the independent variable, we found AC to be related to the RIF effect. Only high but not low AC subjects showed the presence of RIF. The results of the affective priming procedure showed that implicit evaluations of NRP items moderate the relationship of high AC and the RIF effect. The explanation why temporarily devaluated NRP could enhance the RIF effect and suggestion concerning future research summarize the article

    Methodology for wind farms critical infrastructure network safety and resilience to climate change analysis

    No full text
    The paper explores the terminology, which refer to wind farms critical infrastructure network. Moreover, there are presented definitions of wind farm critical infrastructure network interconnections and interactions within the Baltic Sea region. The impact of changing climate/weather conditions on the critical infrastructure and its operation are also considered
    corecore