We consider the Asakura-Oosawa model of hard sphere colloids and ideal
polymers in contact with a porous matrix modeled by immobilized configurations
of hard spheres. For this ternary mixture a fundamental measure density
functional theory is employed, where the matrix particles are quenched and the
colloids and polymers are annealed, i.e. allowed to equilibrate. We study
capillary condensation of the mixture in a tiny sample of matrix as well as
demixing and the fluid-fluid interface inside a bulk matrix. Density profiles
normal to the interface and surface tensions are calculated and compared to the
case without matrix. Two kinds of matrices are considered: (i) colloid-sized
matrix particles at low packing fractions and (ii) large matrix particles at
high packing fractions. These two cases show fundamentally different behavior
and should both be experimentally realizable. Furthermore, we argue that
capillary condensation of a colloidal suspension could be experimentally
accessible. We find that in case (ii), even at high packing fractions, the main
effect of the matrix is to exclude volume and, to high accuracy, the results
can be mapped onto those of the same system without matrix via a simple
rescaling.Comment: 12 pages, 9 figures, submitted to PR