15 research outputs found

    Dissociation of somatic growth, time of sexual maturity, and life expectancy by overexpression of an RGD-deficient IGFBP-2 variant in female transgenic mice

    Get PDF
    Impaired growth is often associated with an extension of lifespan. However, the negative correlation between somatic growth and life expectancy is only true within, but not between, species. This can be observed because smaller species have, as a rule, a shorter lifespan than larger species. In insects and worms, reduced reproductive development and increased fat storage are associated with prolonged lifespan. However, in mammals the relationship between the dynamics of reproductive development, fat metabolism, growth rate, and lifespan are less clear. To address this point, female transgenic mice that were overexpressing similar levels of either intact (D-mice) or mutant insulin-like growth factor-binding protein-2 (IGFBP-2) lacking the Arg-Gly-Asp (RGD) motif (E-mice) were investigated. Both lines of transgenic mice exhibited a similar degree of growth impairment (-9% and -10%) in comparison with wild-type controls (C-mice). While in D-mice, sexual maturation was found to be delayed and life expectancy was significantly increased in comparison with C-mice, these parameters were unaltered in E-mice in spite of their reduced growth rate. These observations indicate that the RGD-domain has a major influence on the pleiotropic effects of IGFBP-2 and suggest that somatic growth and time of sexual maturity or somatic growth and life expectancy are less closely related than thought previously

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    CCR7 Coordinates the Primary Immune Response by Establishing Functional Microenvironments in Secondary Lymphoid Organs.

    Get PDF
    The proper function of immune surveillance requires well-coordinated mechanisms in order to guide the patrolling immune cells through peripheral tissues and into secondary lymphoid organs. Analyzing gene-targeted mice, we identified the chemokine receptor CCR7 as an important organizer of the primary immune response. CCR7-deficient mice show severely delayed kinetics regarding the antibody response and lack contact sensitivity and delayed type hypersensitivity reactions. Due to the impaired migration of lymphocytes, these animals reveal profound morphological alterations in all secondary lymphoid organs. Upon activation, mature skin dendritic cells fail to migrate into the draining lymph nodes. Thus, in order to bring together lymphocytes and dendritic cells to form the characteristic microarchitecture of secondary lymphoid organs, CCR7 is required to rapidly initiate an adoptive immune response
    corecore