61 research outputs found

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≥ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    Application of Phylodynamic Tools to Inform the Public Health Response to COVID-19: Qualitative Analysis of Expert Opinions

    Get PDF
    Background: In the wake of the SARS-CoV-2 pandemic, scientists have scrambled to collect and analyze SARS-CoV-2 genomic data to inform public health responses to COVID-19 in real time. Open source phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology have rapidly gained popularity for their ability to illuminate spatial-temporal transmission patterns worldwide. However, the utility of such tools to inform public health decision-making for COVID-19 in real time remains to be explored. Objective: The aim of this study is to convene experts in public health, infectious diseases, virology, and bioinformatics—many of whom were actively engaged in the COVID-19 response—to discuss and report on the application of phylodynamic tools to inform pandemic responses. Methods: In total, 4 focus groups (FGs) occurred between June 2020 and June 2021, covering both the pre- and postvariant strain emergence and vaccination eras of the ongoing COVID-19 crisis. Participants included national and international academic and government researchers, clinicians, public health practitioners, and other stakeholders recruited through purposive and convenience sampling by the study team. Open-ended questions were developed to prompt discussion. FGs I and II concentrated on phylodynamics for the public health practitioner, while FGs III and IV discussed the methodological nuances of phylodynamic inference. Two FGs per topic area to increase data saturation. An iterative, thematic qualitative framework was used for data analysis. Results: We invited 41 experts to the FGs, and 23 (56%) agreed to participate. Across all the FG sessions, 15 (65%) of the participants were female, 17 (74%) were White, and 5 (22%) were Black. Participants were described as molecular epidemiologists (MEs; n=9, 39%), clinician-researchers (n=3, 13%), infectious disease experts (IDs; n=4, 17%), and public health professionals at the local (PHs; n=4, 17%), state (n=2, 9%), and federal (n=1, 4%) levels. They represented multiple countries in Europe, the United States, and the Caribbean. Nine major themes arose from the discussions: (1) translational/implementation science, (2) precision public health, (3) fundamental unknowns, (4) proper scientific communication, (5) methods of epidemiological investigation, (6) sampling bias, (7) interoperability standards, (8) academic/public health partnerships, and (9) resources. Collectively, participants felt that successful uptake of phylodynamic tools to inform the public health response relies on the strength of academic and public health partnerships. They called for interoperability standards in sequence data sharing, urged careful reporting to prevent misinterpretations, imagined that public health responses could be tailored to specific variants, and cited resource issues that would need to be addressed by policy makers in future outbreaks. Conclusions: This study is the first to detail the viewpoints of public health practitioners and molecular epidemiology experts on the use of viral genomic data to inform the response to the COVID-19 pandemic. The data gathered during this study provide important information from experts to help streamline the functionality and use of phylodynamic tools for pandemic responses

    Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    Get PDF
    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Simulation-based design optimization of a wrist exoskeleton

    No full text
    Exoskeletons are widely used in the field of rehabilitation robotics. Upper limb exoskeletons (ULEs) can be very useful for patients with diminished ability to control their limbs in aiding activities of daily living (ADLs). The design of ULEs must account for a human's limitations and ability to work with an exoskeleton. It can typically be achieved by the involvement of vulnerable end-users in each design cycle. On the other hand, simulation-based design methods on a model with human-in-the-loop can limit the design cycles, thereby reducing research time and dependency on end users. This study makes it evident by using a case where the design of an exoskeleton wrist can be optimized with the usage of a torsional spring at the joint, that compensates for the required motor torque. Considering the human-in-the-loop system, the multibody modeling results show that the usage of a torsional spring in the joint can be useful in designing a lightweight and compact exoskeleton joint by downsizing the motor.Clinical Relevance - The proposed methodology of designing an upper-limb exoskeleton has a utility in limiting design cycles and making it both convenient and useful to assist users with severe impairment in ADLs.</p

    Elements of toxicological concern and the arsenolipids’ profile in the giant-red Mediterranean shrimp, Aristaeomorpha foliacea

    No full text
    The aim of this study was to determine lead, mercury, cadmium, arsenic and selenium in muscle and cephalothorax of giant red Mediterranean shrimp (Aristaeomorpha foliacea). Arsenic was also determined in the lipid fraction of the shrimp to provide an estimate of the arsenolipids. The results indicated that Pb and Cd were higher in cephalothorax than in muscle (p &lt; 0.05), while Hg was doubled in muscle. The concentrations of Cd, Pb and Hg in the edible tissue of shrimp were under the European Union maximum levels for contaminants in foodstuffs. The molar ratio of Se:Hg was calculated to 2.4:1 and 20:1 in muscle and cephalothorax, respectively, results higher than the recommended (1:1). Arsenic concentration was one order of magnitude higher than the rest of the elements. The arsenolipids comprised 0.4 and 1.9 % of the total As in muscle and cephalothorax, respectively, whereas the rest was comprised by water soluble compounds. Analysis of the lipid extracts with High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectrometry showed the existence of several arsenolipids, with a dominant peak eluting at 2−4 min, in both muscle and cephalothorax. The Estimated Weekly Intake per meal size in both tissues for adults was calculated. © 2020 Elsevier Inc
    corecore