2,008 research outputs found

    Subcolumnar Dendritic and Axonal Organization of Spiny Stellate and Star Pyramid Neurons within a Barrel in Rat Somatosensory Cortex

    Get PDF
    Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic inpu

    European surveillance for enterovirus D68 during the emerging North-American outbreak in 2014

    Get PDF
    M. Lappalainen, A. Jääskeläinen ja T. Smura ovat työryhmän ESCV-ECDC EV-D68 Study Grp jäseniä.Background: In August and September 2014, unexpected clusters of enterovirus-D68 (EV-D68) infections associated with severe respiratory disease emerged from North-America. In September, the European Centre for Disease Prevention and Control (ECDC) asked European countries to strengthen respiratory sample screening for enterovirus detection and typing in cases with severe respiratory presentations. Objectives: To provide a detailed picture of EV-D68 epidemiology in Europe by conducting a retrospective and prospective laboratory analysis of clinical specimens. Study design: An initiative supported by the European Society for Clinical Virology (ESCV) and ECDC was launched to screen for EV-D68 in respiratory specimens between July 1st and December 1st 2014 in Europe and to sequence the VP1 region of detected viruses for phylogenetic analytic purposes. Results: Forty-two institutes, representing 51 laboratories from 17 European countries, analyzed 17,248 specimens yielding 389 EV-D68 positive samples (2.26%) in 14 countries. The proportion of positive samples ranged between 0 and 25% per country. These infections resulted primarily in mild respiratory disease, mainly detected in young children presenting with wheezing and in immuno-compromised adults. The viruses detected in Europe are genetically very similar to those of the North-American epidemic and the majority (83%) could be assigned to clade B. Except for 3 acute flaccid paralysis (AFP) cases, one death and limited ICU admissions, no severe cases were reported. Conclusions: The European study showed that EV-D68 circulated in Europe during summer and fall of 2014 with a moderate disease burden and different pathogenic profile compared to the North-American epidemic. (C) 2015 The Authors. Published by Elsevier B.V.Peer reviewe

    A Non Intrusive Low Cost Kit for Electric Power Measuring and Energy Disaggregation

    Get PDF
    This article presents a kit to collect data of electric loads of single and three phases main power supply of a house and perform the energy disaggregation. To collect the data, we use sensors based on open magnetic core to measure the electromagnetic field induced by the current in the electric conducting wire in a non intrusive way. In particular, each sensor from the three-phase device wraps/encloses each phase without alignment. In order to calibrate the three-phase device, we present a method to calculate the neutral RMS without complex numbers using (Analysis of Variance) ANOVA and post hoc Tukey’s multiple comparison test to assert the differences of measures among phases. We managed to validate the method using a measure reference. Additionally, to perform the energy disaggregation, we use the NILMTK tool. This toll was used, initially, to compare disaggregation algorithms on many public datasets. We use in our system two disaggregation algorithms Combinatorial Optimization and Factorial Hidden Markov Model algorithms. The results show that is possible to collect and perform energy disaggregation through our embedded system

    A Non Intrusive Low Cost Kit for Electric Power Measuring and Energy Disaggregation

    Get PDF
    This article presents a kit to collect data of electric loads of single and three phases main power supply of a house and perform the energy disaggregation. To collect the data, we use sensors based on open magnetic core to measure the electromagnetic field induced by the current in the electric conducting wire in a non intrusive way. In particular, each sensor from the three-phase device wraps/encloses each phase without alignment. In order to calibrate the three-phase device, we present a method to calculate the neutral RMS without complex numbers using (Analysis of Variance) ANOVA and post hoc Tukey’s multiple comparison test to assert the differences of measures among phases. We managed to validate the method using a measure reference. Additionally, to perform the energy disaggregation, we use the NILMTK tool. This toll was used, initially, to compare disaggregation algorithms on many public datasets. We use in our system two disaggregation algorithms Combinatorial Optimization and Factorial Hidden Markov Model algorithms. The results show that is possible to collect and perform energy disaggregation through our embedded system

    Prefrontal Cortex HCN1 Channels Enable Intrinsic Persistent Neural Firing and Executive Memory Function

    Get PDF
    In many cortical neurons, HCN1 channels are the major contributors to I(h), the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of I(h) in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of I(h) decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or I(h) blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question

    Genome-Wide Discovery of Somatic Regulatory Variants in Diffuse Large B-Cell Lymphoma

    Get PDF
    Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3′ UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics.&nbsp

    Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex

    Get PDF
    This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2–6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90–580 boutons per neuron); 2) pyramidal neurons in L3–L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2–4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore