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Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-

cells. Prognosis is strongly associated with molecular subgroup, although the driver muta-

tions that distinguish the two main subgroups remain poorly defined. Through an integrative

analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-

coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-

regulatory sites, and implicates recurrent mutations in the 3′ UTR of NFKBIZ as a novel

mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell

(ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ

receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with

poor patient outcomes suggestive of a novel oncogene. These results expand the list of

subgroup driver mutations that may facilitate implementation of improved diagnostic assays

and could offer new avenues for the development of targeted therapeutics.
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It has been established that DLBCL, although genetically het-
erogeneous, can be robustly divided at the gene expression
level into two “cell of origin” (COO) subgroups based on

markers of B-cell differentiation and NF-κB activity pathways,
where high NF-κB activity is a hallmark of the ABC subgroup1.
EZH22, SGK1, GNA13 and MEF2B2 exemplify genes that are
mutated exclusively in GCB cases, whereas mutations inMYD883,
CD79B4 and CARD115 are reportedly more common in ABC.
Some DLBCL cases have few mutations that are characteristic of
either subgroup, suggesting that additional genetic changes may
shape the malignancy. Similarly, the over-expression of proteins
with potential therapeutic and clinical relevance cannot always be
explained by known genetic alterations6. Gaining a more com-
plete understanding of the genetic features of DLBCL in general,
and each subgroup in particular, should lead to improved
methods for sub-classification, and further inform on the mole-
cular and genetic underpinnings of the lymphoma found in
individual patients. Such enhancements have the potential to
facilitate the development of therapies such as small molecule
inhibitors7 or monoclonal antibodies and immunotherapies that
target somatic mutations or cell surface proteins8.

Although there have now been thousands of DLBCL tumours
analysed using targeted strategies such as array-based copy
number analysis9 or whole exome sequencing (WES)10, a limited
number of complete DLBCL genomes have been described to
date11–13. Nonetheless, further analysis of DLBCL using whole
genome sequencing (WGS) has significant potential to uncover
new somatic structural variations (SVs), copy number alterations
(CNAs) and other cis-acting regulatory mutations that may be
cryptic to more targeted approaches. In several lymphoid cancers,
including DLBCL, the enzyme AID (encoded by AICDA), in
cooperation with POLη, induces mutations in actively transcribed
genes through the process of aberrant somatic hypermutation
(aSHM)14, which affects a substantial number of loci in these
cancers relative to other B-cell lymphomas15. As the repertoire of
known aSHM targets in lymphoma continues to grow, it has
become apparent that this process can also impact non-genic loci
associated with super-enhancers. Given the disproportionate
representation of mutations in non-coding regions, a thorough
evaluation of the potential for regulatory driver mutations in
aSHM targets and elsewhere is warranted16,17.

Here, we present a novel strategy to identify coding and non-
coding regions with an enrichment of somatic mutations
genome-wide in large cohorts of patients, allowing us to identify
sites affected by aSHM or with clustered mutations resulting from
positive selection and infer their potential cis-regulatory effects on
coding genes11,12. We analysed WGS data from 153 DLBCL
tumour/normal pairs (discovery cohort), perform validation on
an additional 338 cases (internal validation cohort) and compare
these results to existing WES data from over 1000 additional cases
(external validation cohort)10 to identify coding and non-coding
loci recurrently affected by somatic single nucleotide variants
(SNVs) or indels, collectively referred to as simple somatic
mutations (SSMs) in DLBCL. Through the analysis of matched
RNA-seq data, we uncovered the effect of recurrent structural
variations (SVs) and recurrently mutated non-coding regions in
mediating the transcriptional or post-transcriptional regulation of
numerous genes with relevance to DLBCL.

Results
Local mutation density of SSMs. In each of the 153 paired
DLBCL genomes (cohort details in Supplementary Data 1), we
detected between 1,689 and 121,694 SSMs (median: 14,026;
Supplementary Data 2). We separately inferred somatic copy
number variations (CNVs) and 12,609 structural variation (SV)

breakpoints (range: 0–390; median 66; Supplementary Data 3)
and annotated these based on proximity to genes. We imple-
mented two new algorithms, Rainstorm and Doppler, that infer
regions of arbitrary span with SSM density elevated above the
local background. Rainstorm considers the positions of mutations
pooled from a cohort of cancer genomes (optionally excluding
any variants within the coding region of genes) and calculates
local mutation density relative to each mutation, similar in
principle to rainfall plots18. Doppler then infers the presence and
boundaries of peaks of elevated local mutation rate. An initial
analysis that excluded all mutations in coding regions detected
4,386 such peaks among the discovery cohort ranging from a
single nucleotide to many kilobases (kb) in length (median length:
664 nucleotides; Fig. 1a; Supplementary Data 4). The regions
within these peaks exhibited a median mutation density of 10.3
per kb, whereas a randomly selected region showed, on average,
1.00 mutation per kb. Our analysis also revealed examples of non-
coding loci with mutation peaks, for example the two adjacent
long non-coding RNA (lncRNA) genes NEAT1 andMALAT1 and
the microRNA miR-142. Mutations at each of these loci have
been previously noted in DLBCL and FL with a pattern consistent
with aSHM19,20.

To determine the suitability of our approach to identify loci
with mutations relevant to DLBCL biology, we applied Rain-
storm/Doppler to all mutations including those within coding
regions. We found a similar number of peaks (4,405), which
comprised the bulk of original regions along with peaks in genes
with known mutation hot spots such as EZH2, FOXO1, and
MYD88 (Supplementary Data 5). Aside from intergenic regions
(2,214), the top three peak annotations were Intron (1,620), 5′
Flank (258) and 3′ Flank (208). These are also the regions
typically affected by aSHM and, as expected, virtually all of the
known targets of aSHM12,15 were represented among the Doppler
peaks. Some genes recurrently affected by non-silent mutations in
DLBCL also displayed an excess of mutations affecting their non-
coding regions, including SGK1, PRDM1, TMSB4X, and
TBL1XR1.

The relative representation of SNVs affecting distinct trinu-
cleotide contexts, known as mutation signatures, can inform on
the major mutational processes in a tumour. Using standard
methods21, we inferred a robust set of 11 de novo signatures from
the entire cohort and assigned each to a COSMIC reference
signature on the basis of cosine similarity (Fig. 1b; Supplementary
Figure 2). Hierarchical clustering of the cases based on the relative
abundance of each signature (“exposure”) did not recapitulate the
molecular subgroups (Fig. 1c), though a direct comparison
between ABC and GCB cases revealed four signatures with
significantly higher exposure among GCB cases (Wilcoxon rank-
sum test, P < 0.05) (Fig. 1d). These include V6, a signature closely
resembling one attributed to AID-mediated SHM (COSMIC
Signature 9), which was identified in lymphoid cancers21, and V2,
one of the more unique signatures identified herein (Supplemen-
tary Figure 2). Given that AID is a cytidine deaminase, we
compared the proportion of mutations affecting the C (or G)
within AID recognition motifs that fall within and outside peaks
and confirmed a significant enrichment of mutations in this
context within the Doppler peaks (P < 2.2 × 10−16, Fisher’s exact
test). Although this points to AID activity as a major process
driving mutagenesis in DLBCL, there is clearly a variable
collection of other mutagenic processes at play. ABC cases
showed lower exposure to the AID-related signature, though
there were ABC cases with mutations in some of the peaks
attributed to known aSHM targets. Paradoxically, the expression
of AID was significantly higher among the ABC cases in our
internal validation cohort (P= 9.1 × 10−6, Wilcoxon rank-sum
test). There was also substantial variability in the exposure to this
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signature within GCB genomes. Taken together, these data
suggest that other biological variables beyond COO affect the
extent of AID-mediated mutation and the specific loci targeted by
this process in DLBCL.

Identifying candidate cis-regulatory mutations. The pre-
dominant mutation type known to directly affect gene expression
in cis in DLBCL are translocations and other SVs. As expected,
genes most frequently proximal to SVs were oncogenes with
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known relevance in DLBCL including BCL2, BCL6, FOXP1, and
MYC (Supplementary Figure 3). Some SVs affecting known or
suspected oncogenes appeared within the gene body, such as
those in FOXP122, TBL1XR1, or NFKBIZ, which can lead to novel
isoforms or fusion transcripts23. We searched for putative cis-
regulatory variation by comparing the proximity of SVs to CNV
foci previously identified through analysis of our validation
cohort (Table 1; Ennishi et al., unpublished). Tumour suppressor
genes (TSGs) more commonly contained SV breakpoints (typi-
cally deletions) within the gene body, including TP53, CDKN2A,
and CD58. Some loci affected by a combination of SVs and CNVs
also had nearby Doppler peaks (e.g. MEF2B and NFKBIZ;
Table 1). In contrast, TOX and WWOX harboured a substantial
number of distinct breakpoints including several examples of
focal deletions but rarely contained SSMs (Supplementary Fig-
ure 4A). However, few patients harboured SVs in TOX and
WWOX, indicating these genes may rarely act as tumour sup-
pressor genes in DLBCL. Many of the known aSHM targets were
also enriched for SVs including MEF2B, a gene with multiple
known mutation hot spots, particularly in GCB DLBCL. The
function of MEF2B mutation in DLBCL has not been definitively
established24,25, and these putative inactivating mutations pro-
vides further evidence of its role as a tumour suppressor but does
not eliminate the possibility of shortened isoforms with an
enhanced or distinct activity. Further complicating matters,
MEF2B SVs were predominantly found in ABC, whereas hot spot
mutations are a known feature of GCB, possibly indicating dis-
tinct roles of this gene in each subgroup.

We utilised RNA-seq-derived expression values from a subset
of the discovery cohort cases to infer cis effects of these events on

expression. Through this analysis, both NFKBIZ and FCGR2B
were identified as candidate oncogenes based upon significantly
elevated expression in cases with either a gain or proximal SV
(Supplementary Figure 4B). NFKBIZ has been reported as a target
of amplification in some DLBCLs but has not, to our knowledge,
been shown to be deregulated through SVs26. We extended this
analysis to identify Doppler peaks with potential relevance in
modulating transcription by determining peaks whose mutation
status was associated with the expression of nearby genes
(Supplementary Figure 5). Most protein-coding loci whereby
expression correlated with mutation status were known targets of
aSHM (including SERPINA9, CD44, and PIM1) or novel targets
identified herein (including DNMT1 and AICDA). However,
there are many additional genes with high expression levels that
did not appear to be influenced by aSHM, demonstrating that
expression alone is insufficient to explain aSHM. Nonetheless,
this subset of genes that are affected by aSHM may act as a
permanent record indicating sustained or past high gene
expression and thereby a genetic marker of their cell of origin.
Although the bulk of these may therefore not represent driver
mutations, the unprecedented breadth of mutations affecting
potential regulatory regions including enhancers proximal to
these genes suggests the potential for some to affect gene
expression and thus warrants further investigation.

Recurrently mutated loci associated with ABC or GCB DLBCL.
By comparing mutation abundance within peaks derived from the
full set of mutations, we identified 89 sites significantly enriched
for mutations in either ABC (37) or GCB (52) cases

Table 1 Overview of SVs and CNVs proximal to genes detected by WGS

Structural Variation Recurrent CNV Summary

Del Tra Dup Inv Num (type) Median Minimum Total Doppler Peak?

TCF4 5 2 2 1 41 (A) 12986372 73803 44 no
CDKN2A 22 20 0 1 22 (D) 16505508 400124 42 none
NFKBIZ 6 3 0 3 31 (A) 17720083 944075 36 3′ UTRa
FOXP1 9 6 2 0 27 (A) 19034690 3207496 35 introna

FCGR2B 2 0 0 2 33 (A) 11049954 96085 34 noa

IKBKE 1 0 1 0 28 (A) 15176955 1095013 29 no
CD58 14 10 4 0 11 (D) 8488587 559852 25 intronsb

TOX 12 8 2 1 10 (D) 35182055 192657 22 no
CIITA 13 9 1 3 7 (D) 6536287 1151750 20 introna

TP53 4 2 0 0 18 (D) 9410568 1145996 21 noneb

MEF2B 10 9 0 1 8 (D) 7855612 1863130 18 noneb

ETV6 10 8 2 1 3 (D) 19441596 3190056 13 intron 1
IRF8 4 2 1 1 3 (D) 7701889 185094 7 intron 1b

BCL2L11 5 5 1 0 2 (D) 7321203 339970 7 intron 1

SVs are separately counted by the type of event as determined by read pairing information. The total number of CNVs in the direction associated with the recurrent alteration (A or D) and the median
and minimum of these is shown to highlight the focal nature of some of these events
Tra, translocation; Del, deletion; Dup, duplication; Inv, inversion; A, copy number amplification or gain; D, copy number deletion
a Region was subjected to targeted sequencing to determine prevalance of coding and non-coding mutations
bRegion was subjected to targeted sequencing to determine prevalence of coding mutations

Fig. 1 Rainstorm and mutation signature analysis of DLBCL genomes. a An overview of mutation peaks and the rainstorm representation of cohort-wide
inter-mutation distance for chromosome 16. Peaks identified by the Doppler algorithm that could be attributed to a nearby gene are labelled below. Known
aSHM targets such as CIITA and IRF8 are among the most visible peaks in the Rainstorm view. b Our de novo inference of mutation signatures from the
entire cohort revealed 11 robust signatures. Each signature was assigned to a reference signature from the curated set of 30 signatures in the Catalogue of
Somatic Mutations in Cancer (COSMIC) database based on cosine similarity. The individual pie charts represent the strength of this similarity. The rows
are arranged such that those with weaker similarity to a known signature are near the bottom. c A heat map showing the exposure of all 11 signatures in the
genomes. Cases (columns) and signatures (rows) are ordered based on hierarchical clustering on the relative exposures. d Comparison of the exposure for
the signatures in GCB and ABC cases including the four signatures with significantly higher exposure in GCB cases (indicated with an asterisk). The lower,
middle and upper boxplot hinges correspond to the 25th, 50th and 75th percentiles, respectively. The boxplot whiskers extend outwards past the hinges up
to the inter-quartile range×1.5 or the farthest value, whichever is closest
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(Supplementary Figure 6A; Supplementary Data 6). The bulk of
mutations in many of these loci affected introns, the 5′ UTR or
upstream of the TSS, and unsurprisingly, many were known
aSHM targets discussed above (Fig. 2a; Supplementary Figure 7).
Some hypermutated loci contained multiple discrete peaks. For
example, the BCL6 locus and its nearby super-enhancer contained

31 discrete peaks (Supplementary Figure 6B). We also noted a
second mutation peak in the intron of BCL2 distal to the TSS that
appears to be a regulatory region (Supplementary Figure 6C).

We tested each of the COO-associated peaks for association
with treatment outcome in the discovery cohort using univariate
Kaplan-Meier models. We identified a significant association
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between each of CIITA and IGHG1 mutation status and shorter
time to progression (TTP) and disease-specific survival (DSS) but
these did not retain significance after correction for multiple
hypothesis testing. Using our internal validation cohort (Supple-
mentary Table 1), we performed targeted sequencing on both the
coding regions for a large set of known DLBCL-related genes and
genes identified from this analysis as enriched for non-silent
mutations (Supplementary Table 7) along with a selection of
these non-coding peaks. Of those selected for validation, we
confirmed 10 loci were enriched for mutations in ABC and 26
were enriched in GCB (Fig. 2c, d). In contrast to prior studies,
CARD11 mutations were found here to be significantly enriched
in GCB cases. The four sites with the strongest specificity for ABC
were CD79B (Y197), MYD88 (L273), MPEG1, and the 3′ UTR of
NFKBIZ (Fig. 2; Supplementary Figure 6). The majority of
mutations affecting CIITA, IGHG, and NFKBIZ were non-coding
and, with the exception of NFKBIZ, were consistent with being
aSHM targets (Supplementary Figure 7A). NFKBIZ mutations
were almost entirely within the 3′ UTR, and most did not affect
AID motifs (Fig. 3a). In our external validation cohort, we found
a nearly identical pattern of SSMs in the NFKBIZ 3′ (Fig. 3b), and
within the ABC sub-type, mutations in NFKBIZ andMYD88 were
significantly mutually exclusive (P= 0.0042, CoMEt exact test).
We determined the prevalence of this mutation in other
lymphoid cancers with available WGS data including CLL, FL,
and BL. FL had the next highest prevalence of NFKBIZ 3′ UTR
mutations mutations appearing in <3% of cases, suggesting these
mutations are specific to DLBCL.

Functional characterisation of NFKBIZ 3′ UTR variants. The
specificity of NFKBIZ 3′ UTR mutations to DLBCL (particularly
ABC cases) suggests a strong selective pressure and implicates
them as having a regulatory role in cis (Fig. 3). The mutated
region is highly conserved and has been predicted to form mul-
tiple stable secondary structures which are thought to contain a
destabilising element that promotes rapid mRNA turnover27,28.
Through available DLBCL cell line WGS data11, we identified 3′
UTR mutations in two cell lines (DOHH-2 and SU-DHL-6) and
amplification of this locus in two additional lines (OCI-Ly10 and
HBL-1). NFKBIZ mRNA levels were consistently higher among
cases with 3′ UTR mutations or amplifications, supporting a
common role in promoting NFKBIZ expression. To determine
whether this effect was in cis, we searched for evidence of allelic
imbalance (AI) in matched RNA-seq data from the internal
validation cohort. Of the cases with sufficient depth and at least
one heterozygous SNP in NFKBIZ, 24 SNPs in 18 tumours
exhibited significant AI favouring the mutant allele. Furthermore,
when examining AI of somatic mutations, NFKBIZ showed one
of the highest frequencies of imbalance (21/33 patients, 64%)
compared to other lymphoma-associated genes (Supplementary
Figure 7B; Supplementary Table 8).

Mutations affecting predicted structural elements in the 3′
UTR of NFKBIZ more commonly exhibited significant AI than

those downstream or within the CDS (Fig. 3d). To confirm these
observations, we implemented a ddPCR assay that separately
quantifies mutant and wild-type NFKBIZ alleles and tested
mRNA extracted from eight cell lines (Fig. 3e top) and a subset of
RNA-seq data from the internal validation cohort. Samples with
NFKBIZ mutations or amplifications had significantly higher
mRNA levels. We confirmed AI favouring the mutant allele in the
two cell lines with NFKBIZ 3′ UTR deletions (DOHH-2 and SU-
DHL-6) and higher IκB-ζ protein levels (encoded by the NFKBIZ
gene) in these NFKBIZ mutant lines relative to those lacking such
events (Fig. 3e bottom). One cell line (Pfeiffer) which lacked any
detectable NFKBIZ mutation had elevated NFKBIZ mRNA levels
relative to un-mutated lines. We suspect this is due to alternative
transcriptional regulation, such as STAT3, which is mutated in
this cell line and suggested to play a role in NFKBIZ
activation29,30.

We then created a series of five UTR constructs, a wild-type
fragment representing the well-conserved portion of the 3′ UTR,
some of the commonly observed deletions, and two SNVs which
affect it. We generated RNA from each of these and, using a
combination of methods, found that each mutant altered the
RNA structure relative to the wild-type 3′ UTR fragment
(Supplementary Figure 8). Further implicating these mutations
in modulating the expression of NFKBIZ, when placed 3′ to the
luciferase CDS, each of the variants caused elevated ectopic
expression compared to the wild-type sequence (Fig. 3f).

Molecular features associated with patient outcome. Another
striking pattern of mutations identified in this analysis were the
focal copy number gains and amplifications affecting the Fcγ
receptor locus, a complex region of the genome comprising
multiple paralogs that have arisen through a series of segmental
duplications31(Fig. 4a, b). In four genomes, the boundaries of
somatic gains could be mapped unambiguously by a combination
of read pairing and read depth (Supplementary Figure 9A). The
nature of these events and some evidence for fusion transcripts
between the co-amplified genes could imply amplification as an
extra-chromosomal double minute (Supplementary Figure 9B). It
is conceivable, however, that additional structural variants were
missed due to a limited ability to uniquely mapping short reads.
Establishing the overall incidence of relevant CNVs affecting this
locus is also confounded by the presence of common copy
number alterations in this region as many of the single copy gains
could be explained by germline events in the absence of paired
samples. Using a custom multiplex droplet digital PCR (ddPCR)
assay, we confirmed the CNVs and identified seven additional
examples of amplifications and several additional gains not
detected by SNP arrays. Based on these results, the prevalence of
amplifications affecting FCGR2B was at least 14 out of 451 (3.1%).
This is a conservative value including only those events causing
changes in copy number beyond those expected from germline
CNVs. Further characterisation of these cases with long-read
sequencing could allow additional somatic gains detected by this

Fig. 2 Differences in mutational representation between DLBCL molecular subgroups. a An enhancer proximal to PAX5 was preferentially mutated in GCB
cases. A nearby peak in GRHPR near PAX5 was more commonly mutated in ABC cases. Non-coding mutation of the enhancer proximal to PAX5 has been
reported in CLL but has not, to our knowledge, been described in other lymphoid cancers. The mutation pattern in DLBCL resembles that of other super-
enhancers (Supplementary Figure 6B). b S1PR2 is a known target of aSHM, and the mutations mainly affect the first intron. DNMT1 is adjacent to S1PR2 and
has a similar mutation pattern. Both of these peaks were enriched for mutations in GCB, indicating the potential for co-regulation of these genes using a
common set of regulatory regions. c Coding and non-coding mutations that may be associated with either ABC or GCB COO are shown based on our
recurrence cohort and are ordered on the strength of the association. For genes with missense mutation hot spots or (for NFKBIZ) a 3′ UTR hot spot, only
mutations affecting that region were considered (indicated in parentheses beside the gene). Either hot spot, coding, or all mutations were used for this
calculation, depending on the gene, as indicated in the legend. d The mutations detected in these genes are shown for each patient in our validation cohort.
For genes affected by aSHM, mutations are represented using grey scale to indicate the number of mutations detected in each patient
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assay to be differentiated from germline CNVs. Among the genes
in this region, only the expression of FCGR2B (P= 0.0357) and
FCRLA (P= 0.0210) were significantly associated with amplifi-
cation status (generalised linear model, Fig. 4c). Notably, ampli-
fications were mainly found in GCB cases and tumours with an
amplification showed strong Fcγ receptor IIB protein (CD32B)

staining on a tissue microarray, though additional cases with
strong staining were also observed (Supplementary Figure 10A).

Several gene-expression, CNV, or mutation-based strategies
have been devised to predict outcome in DLBCL9,10, with COO
and co-occurrence of MYC and BCL2 translocation being the
most widely accepted32. Translocations involving the Fcγ receptor
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locus and immunoglobulin regions have been described33, but the
recurrence of focal amplifications that deregulate FCGR2B
expression has not been appreciated. Although their prevalence
was low, these amplifications were nonetheless significantly
associated with inferior outcome in GCB cases. Taking into
account the apparent effect of gains on FCGR2B over-expression,
we hypothesised that elevated FCGR2B mRNA and protein was a
relevant feature of DLBCL. FCGR2B mRNA level was signifi-
cantly associated with outcome when treated as a continuous
variable in a univariate Cox model. We were also able to stratify
GCB patients into two groups with significantly different DSS and
TTP in univariate Kaplan–Meier analysis spanning a range of
thresholds (Fig. 4e, f and Supplementary Figure 10B-C). Using
the internal validation cohort, we combined CIITA and IGHG3
mutation status into a multivariate Cox model along with COO
and FCGR2B expression level and mutation status. Although the
trend was preserved for CIITA, only FCGR2B expression
remained a highly significant predictor of outcome in this model
(Table 2). This model was highly significant within the external
validation cohort and, potentially owing to an enhanced cohort
size, was prognostic in the entire cohort including non-GCB
cases.

Discussion
There has been considerable effort placed on developing assays to
robustly infer the COO of DLBCL patients, most of which rely on
RNA from frozen or formalin-fixed specimens34. DNA-based
assays may have benefits when RNA is not available and could
allow the use of circulating tumour DNA (ctDNA) for this

application35. Our analysis has revealed numerous non-coding
regions with mutations that are associated with COO, and for
many, the association is stronger than non-silent COO-associated
mutations (Fig. 2). In our validation cohort, we found mutations
in NFKBIZ in 13.9% of cases, and 18.0% of cases are mutated
when CNVs are also considered. These mutations were sig-
nificantly enriched in ABC DLBCLs (P= 4.72 × 10−10, Fisher’s
exact test), affecting 33.9% of cases in our data. Multiple studies
have already attributed a 165-bp region in the UTR that harbours
the bulk of the mutations we detected as destabilising
elements27,36. The observation of AI strongly implicates them in
perturbing mRNA turnover, but the functional mechanism is not
clear. NFKBIZ is one of several genes subject to post-
transcriptional regulation by the endoribonucleases Regnase-1
(Reg-1, encoded by ZC3H12A) and Roquin36. This process
involves mRNA turnover and/or sequestration mediated by
interactions between these proteins and specific stem-loops in the
3′ UTRs of their targets37. Interestingly, ZC3H12A was among the
novel genes identified herein as recurrently mutated in DLBCL
(Supplementary Table 7). MYD88, an adaptor protein that is
commonly mutated in ABC, is also important for protecting
NFKBIZ mRNA from this process38. Moreover, B-cell receptor
signalling, which is active in most ABC DLBCLs, can also pro-
mote stabilisation of NFKBIZ mRNA via the UTR27. Amplifica-
tions of NFKBIZ in DLBCL cell lines has previously been shown
to induce expression of a set of NF-κB target genes in ABC
DLBCL26. Elucidating the mechanism whereby 3′ UTR mutations
impact the NF-κB pathway in DLBCL is highly relevant given the
growing list of therapeutic strategies designed to inhibit this
pathway directly or by perturbing upstream signalling events. To

Fig. 3 Mutations affecting the NFKBIZ locus and functional effects on mRNA and protein levels. a NFKBIZ mutations were predominantly found within a
highly conserved region of the 3′ UTR and were significantly enriched in ABC cases (blue) relative to GCB cases (orange). b A detailed view of the mutated
region including the location predicted to have conserved structure (in grey). The pattern of mutations is similar in both the internal validation cohort (322
cases) and the external validation cohort (984 cases). c Mutations in NFKBIZ and MYD88 within ABC and GCB cases in the larger external validation
cohort. The same trend of mutual exclusivity was observed in both validation cohorts. d Comparison of mutant variant allele fractions (VAFs) from DNA
sequencing and RNA-seq of patient samples with NFKBIZ mutations. VAFs higher in RNA relative to the corresponding DNA indicates allelic
imbalance favouring the mutant allele. Significant differences are indicated (*P < 0.05, **P < 0.01, ***P < 0.001, Wilcoxon rank-sum test). e We applied a
custom ddPCR assay to eight DLBCL cell lines to determine NFKBIZ mRNA expression levels. Mutant cell lines consistently showed increased NFKBIZ
mRNA, and we could attribute this to the mutant allele in lines with 3′ UTR mutations (green). Cell line IκB-ζ expression was assessed by western blot.
Only mutant cell lines (green and blue) showed increased protein. f Luciferase reporter assay results show reduced protein expression in the presence of
wild-type UTR with restored expression in mutant constructs. Luciferase expression is normalised to a construct containing a latter portion of the UTR.
Error bars represent s.d. from three replicates

Table 2 Multivariate analysis of FCGR2B expression on disease-specific survival and time to progression

OS/DSSa TTP

Cohort, Model Variable HR p-value HR p-value

FCGR2B mRNA > median 2.41 0.156 2.18* 5.7 × 10−3

BC (GCB only), FCGR2B AMP 2.15 0.140 1.44 0.460
n= 210 Any CIITA mutation 1.42 0.308 1.68 0.0942
without IPI Any IGHG1 mutation 1.149 0.747 1.31 0.494

IPI 3.10* 1.03 × 10−3 3.07* 2.54 × 10−4

FCGR2B mRNA > median 1.37 0.387 1.96* 0.0397
BC (GCB only) FCGR2B AMP 2.13 0.183 1.48 0.472
n= 210 Any CIITA mutation 1.29 0.476 1.61 0.143
with IPI Any IGHG1 mutation 1.23 0.652 1.30 0.535

FCGR2B mRNA > 5 1.52* 1.29 × 10−3 — —
Reddy (All) GCB 0.711 0.0536 — —
n= 530 IPI 2.50* 7.55 × 10−8 — —

aDSS and TTP was only available only for the BC cohort. Overall survival (OS) was used in place of DSS for analysis of cases from Reddy et al. All p-values are from a Cox proportional hazards model

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06354-3

8 NATURE COMMUNICATIONS |  (2018) 9:4001 | DOI: 10.1038/s41467-018-06354-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the best of our knowledge, recurrent 3′ UTR mutations are the
first example of a common somatic UTR alteration that can
directly increase the expression of an oncogene.

Recent data have implicated common polymorphisms and
gene expression differences in tumour tissue in variable response
to rituximab, but whether this was due to their effect on cis or
trans interactions remained unclear. In CLL, cis interactions of
Fc-γ receptor on malignant cells is associated with an elevated
rate of internalisation of CD32B bound to IgG relative to its other
family members39. In trans, CD32B is directly involved in
antibody-dependent cell-mediated cytotoxicity (ADCC), which is

triggered by monoclonal antibody-based (mAb) therapies
including cetuximab, trastuzumab, and rituximab40. We hypo-
thesise that elevated CD32B expression on malignant cells, due in
part to the focal amplifications we have identified herein,
attenuates the normal immune response to rituximab as seen with
alternative isoforms and polymorphic variants of this gene. This
was strongly supported by the significantly inferior outcome of
FCGR2B-high GCB patients treated with R-CHOP (Fig. 4) and is
consistent with a smaller study that showed a correlation between
CD32B protein staining and outcome in FL41. In light of this,
alternative immunotherapy approaches may be warranted for this
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high-risk sub-population. Potential avenues of exploration
include Type II monoclonal antibodies directed at CD20 or other
proteins, which are not internalised by the same process and thus
may be beneficial in these patients, or direct targeting of CD32B
alone or in combination with anti-CD20 immunotherapy42.
Beyond somatic copy number alterations and possibly some
influence from germline CNVs, we also identified an elevated
level of SSMs in two introns of FCGR2B that could promote
intron retention and lead to a truncated isoform. As none of the
tumours sequenced herein had been exposed to rituximab at the
time of biopsy, the effect of these genetic alterations is presumed
to also provide a selective advantage in lymphomagenesis, sug-
gesting an oncogenic function for FCGR2B. Further exploration
of the processes leading to FCGR2B over-expression in DLBCL is
warranted.

Methods
Whole exome sequencing data and analysis. For some of the results, we include
included WES data from seven separate published cohorts10,43–46. We used the
largest cohort, consisting of WES data from over 1000 DLBCL cases10 as our
external validation cohort. Analysis of the relapsed/treatment refractory DLBCLs
and the TCGA cohort was recently described by our group47.

Whole genome sequencing. Patients were diagnosed according to the 2008 WHO
classification, as determined by standardised review by expert hematopathologists.
Patients were excluded if they had any of the following: primary mediastinal large
B-cell lymphoma; primary or secondary central nervous system involvement at
diagnosis; a previous diagnosis of an indolent lymphoproliferative disorder; posi-
tive HIV serology; a secondary malignancy or major medical co-morbidity that
precluded treatment with curative intent. This study was reviewed and approved by
the University of British Columbia–BC Cancer Agency Research Ethics Board, in
accordance with the Declaration of Helsinki, and all participants were recruited
with informed consent.

The genomes included in our analysis represent a compendium of cases from
three sources, referred to as the discovery cohort. Namely, we included 39 cases
from our previous publication11, 41 cases obtained with permission from the
ICGC48, and another 73 de novo DLBCLs recently sequenced in house. Libraries
from the latter were all prepared using PCR-free protocols as previously
described49. Peripheral blood was used as a source of normal DNA for all cases in
the WGS cohort. We performed alignment and detection of SVs, CNVs, and SSMs
using matched tumour/normal pairs using standard algorithms and default
parameters unless otherwise specified. For SVs, we used Manta and retained
variants that pass all default filters50. We identified CNVs using Sequenza51 and
SSMs using Strelka52. The ICGC genomes and matched RNA-seq data were
downloaded in BAM format and re-analysed using the same methods.

Targeted sequencing and analysis. We developed a custom gene panel com-
prising known and candidate DLBCL-related genes and sequenced these regions in
tumour DNA from 338 de novo DLBCL patients using a custom hybridisation-
capture strategy. This group of samples is described throughout as the internal
validation cohort. Of note, a slightly smaller number of cases in this cohort were
subjected to RNA-seq (below). First, we sheared genomic DNA to an average of
300 bp using a COVARIS E220 focused ultrasonicator (Covaris) and built libraries
from individual DNA samples using the NEBNext UltraII library prep kit (New
England BioLabs) according to the protocol provided by the manufacturer. We

measured library yields using Qubit (ThermoFisher Scientific) before pooling in
batches of 12–16 libraries and mixed with 5 μl of Cot-1 DNA (ThermoFisher
Scientific) and 2 μl of xGen Universal Blockers for Illumina platforms (Integrated
DNA Technologies). We completely dried each pool in a SpeedVac centrifuge and
then resuspended, denatured, and hybridised for at least 4 h with 4 pmol of a panel
of xGen Lockdown probes targeting the exons and hotspots of ADAMTS12,
ADPRHL1, ARID1A, ATM, B2M, BCL10, BCL2, BIRC6, BTG2, CARD11, CBWD7,
CCND1, CCND3, CD58, CD79B, CREBBP, DDX3X, DSG4, EBF1, EP300, ETS1,
EZH2, FAS, FBXO11,FOXO1, GABRB3, GHDC, GNA13, GNAI2, HIST1H1C,
HIST1H1E, HVCN1, ID3,IL4R, IRF4, IRF8, KHDRBS2, KLHL6, KMT2C, KMT2D,
MEF2B, MPEG1, MS4A1, MYC, MYD88, NFKB1, NFKBIA, NFKBIE, NFKBIZ,
NOTCH1, NR3C1, P2RY8, PCBP1, PDS5B, PHF6, PIM1, POU2F2, PTPN1, RB1,
RBM38, RFX7, RHOA, S1PR2, SGK1, SIN3A, SMARCA4, SOCS1, SPEN, ST8SIA1,
STAT6, TBL1XR1,TCF3, TFAP4, TMEM30A, TMSB4X, TNFAIP3, TNFRSF14,
TP53, UBR4, USP7, ZC3H12A, and ZFP36L1. We supplemented this pool with our
own biotinylated baits targeting the NFKBIZ 3′ UTR region. We performed tar-
geted enrichment experiments according to the hybridisation capture of DNA
libraries using xGen Lockdown probes and reagents protocol (Integrated DNA
Technologies)46,53. We sequenced enriched libraries on pools on an Illumina
MiSeq instrument using PE 150 bp reads and, after alignment with BWA MEM,
analysed BAM files for simple somatic mutations (SSMs) using Strelka with an
unmatched quasi-normal. Common germline variants with a MAF exceeding 1% in
any ExAC population were subtracted, and the remaining variants were annotated
the Ensembl Variant Effect Predictor54 and converted into the MAF format using
vcf2maf (https://github.com/mskcc/vcf2maf). We also inferred SVs with Manta
and curated to remove highly recurrent variants likely to represent common var-
iants and recurrent artefacts.

Gene expression analysis and cell-of-origin determination. All RNA-seq
libraries were generated using a strand-specific protocol with poly[A] selection. We
used featureCounts (version 1.6.0) to quantify gene-wise expression using all
Ensembl gene IDs from the GRCh37.87 release, and set the minimum mapping
quality to 10. We normalised gene-wise summary counts for library size using the
R package DESeq2, and the resulting normalised expression matrix was used for all
subsequent analyses and visualisations. These data were available from 319 cases in
the internal validation cohort and from 143 of the genome discovery cohort. We
identified 180 cases as GCB using the Bayesian classifier (below) and use this subset
for FCGR2B differential expression analysis and outcome prediction. Given the
requirement of genome-wide information for identifying the effect of genome-wide
mutations on expression, we used the data from only the genome discovery cohort
for those analyses.

We assigned set of loci previously used to discern ABC and GCB cases to the
following 169 distinct Ensembl genes with associated gene names: A4GALT,
ADAT3, AEN, ANKRD13A, ANUBL1, ARHGAP17, ARHGAP24, ARID3A,
ARID3B, ASB13, AUTS2, BATF, BAZ2B, BCL2, BCL2L10, BCL6, BIC, BLNK, BMF,
BPGM, BSPRY, BTLA, C11orf41, C13orf18, CARD11, CCDC50, CCDC144B,
CCND2, CCNG2, CD47, CFLAR, CLECL1, CLINT1, COPB2, CREB3L2, CSNK1E,
CYB5R2, DCTD, DDEFL1, DENND3, DKFZP434I0714, DNAJC10, DOCK10,
EEPD1, ENTPD1, ERP29, ETV6, FAM108C1, FAM46C, FAM53B, FLJ32065,
FLJ42418, FOXP1, FUT8, GNA13, GNL3, HCK, HDAC1, HIP1R, HOPX, HSP90B1,
ICOSLG, IER2, IL12A, IL16, IRF4, ITPKB, JDP2, KCNH8, KCNK12, KIAA0746,
KLHL21, KLHL5, LANCL1, LHFPL2, LIMD1, LMAN1, LMO2, LOC100129034,
LOC196415, LOC645431, LPP, LRMP, LRRC33, MAML3, MAPK10, MARCKSL1,
MAST2, MME, MPEG1, MRPL3, MYBL1, NEIL1, NEK6, NFKBIZ, NIPA2, NR3C1,
OSBPL3, P2RX5, PAG1, PDE9A, PDLIM1, PFKL, PFTK1, PHF16, PI4K2B, PIM1,
PIM2, PLEKHF2, PMM2, PRKAB1, PTK2, PTPN1, RAB7L1, RAP1B, RAPGEF5,
RASGRF1, RBM9, RECK, RILPL2, RUNDC2B, S1PR2, SACS, SEPX1, SERPINA9,
SH3BP5, SLA, SLAMF1, SLC1A1, SLC33A1, SLC38A5, SMARCA4, SPINK2, SSBP2,
SSR3, ST6GALNAC4, STAG3, STAMBPL1, STK17A, STS, SUB1, SULT1A2, SYTL4,
TARS, TBC1D27, TBL1XR1, TCEB3, TCF4, TCTN3, TEX9, TGIF1, TMEM123,

Fig. 4 Somatic and germline events affecting the Fcγ receptor locus. a The genes in the locus are shown with the recent duplication delineated in yellow and
blue. Binned read depth from tumours is summarised using vertical bars. Germline CNVs, such as the gain and deletion shown in orange, are common in
this region but can be readily distinguished from somatic events in paired analyses. In pink are four examples of somatic FCGR2B amplifications. FCRLA is
completely or partially co-amplified in these. Blue arrows indicate breakpoints identified through visual inspection of data. Horizontal bars delineate the
coordinates inferred to be contained within the amplified region. A break in the blue bar corresponding to approximately diploid coverage is indicative of
the amplification affecting an allele representing the common deletion CNV. b In our validation cohort, we used custom ddPCR and targeted hybridisation
capture to infer the presence of gains, deletions, and amplifications. Due to a lack of constitutional DNA for the validation cohort, we are unable to
determine the proportion of single-copy gains and losses that can be attributed to common germline CNVs. The expression of each Fcγ receptor and FCRLA
genes in the locus is shown with the cases separated by copy number state. Clustering on the expression of the four genes affected by amplifications
groups amplified cases alongside some tumours with gains or no alteration detected, indicating the potential for additional avenues leading to FCGR2B
over-expression. c Although rare overall, cases with the amplification showed a significantly shorter DSS and TTP (P= 0.012 and 0.044, respectively; log-
rank test). d FCGR2B expression alone was also significantly associated with DSS and TTP within GCB cases. Specifically, stratifying on median expression
or at any cut point above shows that GCB cases with higher FCGR2B exhibit significantly shorter TTP (P= 4.8 × 10−3, log-rank test), although DSS
differences require a more stringent cutoff (see also Supplementary Figure 10)
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TMPRSS6, TNFAIP8, TNFRSF13B, TNKS, TOX2, TRAM2, TTC9, USP46, VGLL4,
WNT9A, ZBTB32, ZFAT, ZNF318, ZNF385C, ZNF511, and ZPBP2. We
implemented the Bayesian classifier described previously and calibrated it with all
cases having a COO prediction from the Lymph2Cx NanoString nCounter assay34.
Any case designated as “U” by this assay or with no COO information available
were then classified using a cutoff of P(ABC) <0.9 for ABC and P(GCB) > 0.9 for
GCB. This was only used to assign molecular subgroup to the genome discovery
cohort, including the ICGC cases. For the internal validation cohort, all numbers
reported were based on Lymph2Cx results rather than this consensus subgroup
assignment.

Allelic imbalance in NFKBIZ. Heterozygous SNPs were first identified across all
samples in our cohort and annotated using the Ensembl VEP using vcf2maf. For
samples with both DNA and RNA sequencing data available, the number of reads
supporting the reference and alternate allele of each SNP were quantified using
samtools mpileup (version 1.3.1) and a custom script. Intronic SNPs and SNPs
with less than 12-fold coverage were excluded from further analysis. Of the
remaining positions, any SNP showing evidence of allelic imbalance (AI) was
identified by comparing the count of reads supporting each allele between the RNA
and DNA BAM files using the Fisher's exact test (Python Fisher package version
0.1.4). Samples with significant AI (p-value threshold: 0.05) were further cross-
referenced with NFKBIZ mutation and SV calls from the targeted sequencing data
and copy number information determined using Affymetrix SNP6.0 arrays and
OncoSNP. A subset of cases showing AI were selected for validation by ddPCR. AI
of somatic mutations was determined through a similar method, using the somatic
variant calls obtained from targeted sequencing of the internal validation cohort, as
described above. Following false discovery rate correction (Benjamini and Hoch-
berg method), any mutation with Q < 0.1 was considered significant. The ratio of
patients with AI in each gene was calculated by comparing the total number of
patients with at least one mutation in AI to the the total number of patients with at
least one mutation overall, for each gene (Supplementary Data 7).

NFKBIZ digital droplet PCR assay. We designed a hydrolysis probe-based assay
targeting the NFKBIZ 3′ UTR hotspot region. PCR amplicons were chosen to be as
small as possible (60–80 bp) and hydrolysis probes with Tm at least 3 °C higher
than that of PCR primers. We targeted the 3′UTR with a FAM-conjugated probe
and a designed a separate HEX-conjugated probe to target a conserved region of
exon 1. This allowed quantification of total transcripts (exon 1 probe) and wild-
type transcripts (UTR probe) in cell lines with NFKBIZ mutations55. We prepared
ddPCR reactions in a final volume of 22 μL containing 11 μL of 2X ddPCR
Supermix for Probes (no dUTP), a final concentration of 1.0X was used for
hydrolysis probes labelled with FAM and HEX fluorophores and a variable amount
of input DNA (depending on availability and DNA concentration) and generated
droplets using an AutoDGTM System (Bio-Rad). The emulsion of droplets is
initially incubated at 95 °C during 10 min in a C1000 TouchTM Thermal Cycler,
then followed by 80 cycles of 30 s at 94 °C and 1min at optimised annealing
temperature (58 °C). We determined optimal annealing temperature empirically
through a temperature gradient using a DNA sample known to carry an NFKBIZ
mutation. The emulsion of droplets is incubated at 98 °C during 10 min and kept at
4 °C until analysis in a QX200TM Droplet Reader. We analysed the resulting data
and assigned clusters using QuantaSoftTM software, Regulatory edition (Bio-Rad).

Cell culture and western blot. Cell lines were cultured in RPMI (Invitrogen) with
10% fetal calf serum (Sigma-Aldrich), except for SU-DHL-4 and SU-DHL-6 which
were cultured in RPMI with 20% fetal calf serum, and OCI-Ly10 which was cul-
tured in Iscove‘s modified Dulbecco medium with 10% fetal calf serum. All cell
lines were maintained at 37 °C. SU-DHL-4, SU-DHL-6, Karpas422, DOHH-2 and
WSU-DLCL2 were purchased from DSZM, Pfeiffer was purchased from ATCC and
OCI-Ly10 and HBL-1 were gifts from the Weng lab (BCCRC) to the LCR lab. All
cell lines were authenticated by STR profiling. SU-DHL-6. HBL-1 and WSU-
DLCL2 were not mycoplasma tested but all others tested negative.

Western Blotting was performed as described26 using the Rabbit Polyclonal
IκBζ Antibody (TA336346) (Origene) (dilution 1:500) and the Histone H3
Antibody #9715 (Cell Signaling) (dilution 1:1000). Un-cropped western blot is
shown in Supplementary Figure 11.

In vitro NFKBIZ 3′ UTR variant effects on protein expression. A fragment of the
NFKBIZ 3′ UTR was synthesised as a gBlock (Integrated DNA Technologies,
Coralville, IA) for the wild-type UTR and four patient-derived mutations: SNV1,
Del1, Del2 and Del3 (Supplementary Data 8). The gBlocks were PCR amplified
with primers (Supplementary Data 8) to add XbaI sites for cloning. An unrelated
region of the 3′UTR was amplified from normal human DNA to act as a control
sequence. These PCR amplicons were subcloned into the pGL3-Promoter Vector
(Promega) located 3′ to the firefly luciferase translational stop codon. The
nucleotide orientation and sequence of constructed plasmids were confirmed by
DNA sequencing. For luciferase reporter assays, HEK-293T cells (7 × 105) were
seeded in 24-well plates 2 days prior to transfection. Cells were co-transfected with
500 ng of pGL3-pro-NFKBIZ-3UTR (wild-type, mutant or control) firefly lucifer-
ase vector and 10 ng of the pRL-TK (Promega) Renilla luciferase vector, using

Lipofectamine 2000 (Invitrogen). Assays were performed 24 h after transfection
using the Dual-Luciferase Reporter Assay System (Promega). The firefly luciferase
signals were normalised to the Renilla luciferase transfection control. Transfections
were done in technical and biological triplicates.

Investigating Fcγ receptor copy number alterations. We designed a multiplex
ddPCR assay targeting two known genetic polymorphism in FCGR2A (rs1801274)
and FCGR2B (rs1050501) and coding regions of both BTG2, also located in
chromosome 1, and ALK (located in chromosome 2). Probe and primer sequences
are shown in supplementary tables. Contrary to standard ddPCR assays, we
employed single hydrolysis probes to genotype both SNPs55 and leveraged variable
final concentrations and two distinct fluorescent dyes for each hydrolysis probe-
based assay. ddPCR reactions were carried out in a Bio-Rad QX200 system, using
10–20 ng of tumour-derived DNA and analysed using QuantSoftTM software,
Regulatory Edition (Bio-Rad). Copy number gains, losses and amplifications
affecting FCGR genes were inferred by calculating and comparing the number of
positive droplets for each one of the FCGR genes and those corresponding to each
one of the two additional genes used as reference. Our assay targeting rs1050501
co-amplified fragments of both FCGR2B and FCGR2C. We conducted an inde-
pendent assay, which replaced the rs1050501 probe with a FCGR2B-specific probe
that targeted a fixed nucleotide different in exon 3, to differentiate between
FCGR2B and FCGR2C-specific events in a subset of samples. We were then capable
to associate common germline deletions and gains with FCGR2C and detect focal
amplifications of FCGR2B with high confidence. Other somatic gains and ampli-
fications in a reduced number of samples involved FCGR2B and other Fcγ receptor
genes.

Further evidence supporting germline and somatic copy number alterations
affecting the Fcγ region were derived from an independent next generation
sequencing experiment relying on targeted hybridisation capture. We built
genomic libraries from fresh frozen tumour DNA extracts using the NEBNext
UltraII library prep kit (New England Biolabs). These libraries were pooled and
enriched using a custom pool of biotinylated xGen lockdown probes (Integrated
DNA Technologies) spanning the last two introns of FCGR2B and other non-
coding regions found to be recurrently mutated in DLBCL. Given the high
sequence similarity between paralogs, FCGR2B-specific probes also retrieved DNA
sequences at equivalent positions for both FCGR2A and FCGR2C. Enriched
libraries were sequenced on a MiSeq instrument (Illumina Inc.) using PE 150 bp
reads. Raw FastQ files were imported and analysed using the desktop genomic
workbench Geneious (ver. 9.1.5, Biomatters Ltd). Raw reads were aligned using a
stringent algorithm that only retained reads displaying high quality mapping scores
(â‰¥40) and did not display more than 2% mismatches or indels >3 bp with
respect to the reference genome. We then calculated and compared normalised
coverage for each gene using for that purpose only annotated regions in the
reference genome that enabled an ambiguous assignment of reads. This analysis
confirmed elevated FCGR2B coverage for those patients suggested to carry focal
amplifications by ddPCR and helped corroborate common germline copy number
alterations involving a large part or the totality of FCGR2C.

FCGR2B Immunohistochemistry. Tissue microarrays (TMAs) were constructed
by using duplicate 0.6-mm cores from diagnostic pre-treatment FFPE tissue56,57.
Staining was performed on the Ventana platform (Roche, Basel, Switzerland) using
routine staining protocols. IHC staining for expression of CD32B (Abcam EP888Y)
was independently reviewed by two hematopathologists (G.W.S. and P.F.).

RNA structural analysis. For SHAPE analysis, WT and other mutant RNA (~1
pmoles) were denatured by boiling them at 95 °C for 3–4 min and then incubated
with the folding buffer (Final concentration: 111 mM HEPES, pH 8.0, 6.67 mM
MgCl2, 111 mM NaCl) for 20 min at room temperature. The folded RNA was then
treated with 10 mM NMIA (n-methylisatoic anhydride) for 45 min (5 half-lives) at
37 °C or with clean DMSO for control experiment, followed by ethanol pre-
cipitation. The ethanol precipitated RNA was re-dissolved in 10 μl TE (10 mM Tris,
pH 7.4 and 0.1 mM EDTA) and mixed with 32P-5-labelled primers. Primers were
annealed to RNA by incubating the mixture at 65 °C for 5 min and then at 37 °C for
5 min and finally placed on ice for 1 min. SHAPE enzyme mixture (Final Con-
centration: 75 mM KCl, 50 mM Tris HCl, pH 8.3, 0.5 mM each dNTP, 5.1 mM
DTT, 3 mM MgCl2) was then added to the RNA-primer annealed mixture. The
whole mixture was incubated at 50 °C for 1 min followed by the addition of
Superscript III and further incubation at 50 °C for 50 min. After 50 min of incu-
bation at 50 °C, the mixture was treated with 1 μl 4 M NaOH and incubated at 95 °
C for 5 min to degrade the RNA. The reaction was stopped by providing equimolar
HCl to neutralise the base. Denaturing dye (95% formamide, 1 mM EDTA, and
loading dyes) was then added to the mixture and it was heated to 95° for 3 min
before loading on 10% denaturing/sequencing gel.

To generate four separate ladders, ~1 pmoles of wild-type RNA was denatured
at 95 °C for 3–4 min followed by the addition of radiolabelled primers. Primers
were annealed to the RNA by incubating the mixture at 65 °C for 5 min and then at
37 °C for 5 minutes and finally placed on ice for 1 min. SHAPE enzyme mixture
(Final Concentration: 75 mM KCl, 50 mM Tris HCl, pH 8.3, 5.1 mM DTT, 3 mM
MgCl2) was then added to the RNA-primer annealed mixture. 10 μM dNTPs/each
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were added to the mixture and following amounts of ddNTPs were added to get the
separate sequencing ladders for the 4 bases (ddA: 50 ÂµM, ddT: 50 μM, ddC:
100 μM, ddG: 50 μM). The whole mixture was incubated at 50 °C for 1 min
followed by the addition of Superscript III and further incubation at 50 °C for
50 min. After 50 min of incubation at 50 °C, the mixture was treated with 1 μl 4 M
NaOH and incubated at 95 °C for 5 min to degrade the RNA. The reaction was
stopped by providing equimolar HCl to neutralise the base. Denaturing dye
(95% formamide, 1 mM EDTA, and loading dyes) was then added to the mixture
and it was heated to 95 °C for 3 min before loading on 10% denaturing gel.

For the circular dichroism, each RNA was diluted to a working concentration of
2.5 μM. CD spectra were recorded in a Jasco-810 Spectropolarimeter (Jasco, Easton,
MD). The spectra were taken in a quartz cell of 0.5 mm optical path length. The
scanning speed was set 500 nm/min with a response time of 1 s. The spectra
represent an average of 5 sequential scans over a wavelength range of 200–340 nm,
all measured at 22 °C with baseline correction.

De novo mutation signature discovery. Mutation signatures were discovered using
the previously described framework by Alexandrov et al.58. We summarised somatic
SNVs based on their mutational subtype, 5′ context and 3′ context. This resulted in a
mutation catalog matrix of 96 SNV classes for each sample. We performed non-
negative matrix factorisation on our mutation catalog to discover mutational sig-
natures within the entire cohort. Signature stability was computed by boostrap
resampling over 1000 total iterations (10 iterations in each of 100 cores). The optimal
n-signature solution, nopt which simultaneously maximised signature stability and
minimised the Frobenius reconstruction error was automatically selected,

nopt ¼ argminn
Rn �minðRÞ

maxðRÞ �minðRÞ �
Sn �minðSÞ

maxðSÞ �minðSÞ
� �

;

where R and S are the vectors containing reconstruction errors and stability of each n-
signature solution, and Rn and Sn are the reconstruction error and stability of the n-
signature solution. To determine matches to known mutation signatures, cosine
similarity metrics were computed against the 30 COSMIC mutation signatures.
Where more than one signature matched to a single COSMIC signature, the highest
similarity match was chosen and the remaining signatures were matched to the next
most similar COSMIC signature. Differential exposures of mutation signatures
between lymphoma subtypes was performed by the non-parametric Wilcoxon rank-
sum test in R programming language and was adjusted for multiple comparisons by
controlling false discovery rate.

Rainstorm analysis. As described in more detail elsewhere18, the standard rainfall
calculation considers a monotonically increasing set of N positions {pi,…,pn} defining
the location of mutations in a single tumour genome (simplified here to a single
chromosome). The rainfall plot is a scatterplot of points S= (xi, yi) where yi is given
by yi= log(pi+1− pi) for each i ∈{1,2,…,N− 1}. The points are often coloured with a
scheme that indicates the nature of each mutation such that specific mutation sig-
natures favouring a limited repertoire of substitutions can be visually observed. We
note that this plotting method was developed to aid in the study of single cancer
genomes59. This approach cannot be directly applied to a cohort of patients to
highlight areas of the genome that may be affected by mutations more commonly
than by chance. Our goal with the rainstorm approach was to overcome this lim-
itation. We developed an extension of the genome wide inter-mutation distance
calculation used to highlight local fluctuations in mutation rates within single cancer
genomes59. Rather than using the distance to the adjacent mutation in the same
genome, in our variant, the mean distance to the nearest n mutations among unique
genomes is used instead. This variation attempts to suppress signal from a limited
number of genomes from contributing to the cohort-wide signature.

The Rainstorm algorithm begins with a list of lists, P= (P1, P2,…,Pg) each
comprising the monotonically increasing positions from one of the individual
somatic mutations in g patient genomes. P′ is the full (multi-) set of mutation
positions P1∪P2∪ … ∪Pg for all genomes being considered. We noted a consistent
variation in local mutation rate across the genomes included in this analysis. The
local trends generally corresponded to the effect of genome replication timing, with
regions that consistently replicate late in the cell cycle having a higher mutation
rate60. We address this by creating a non-overlapping set of bins of equal length b
(here, b= 100 kb) covering the length of the chromosome l with the positions
contained by the ith bin represented by Bi and the final bin is constrained to only
contain positions ≤l.

B1 ¼ ð1; 2; ¼ ; bÞ
B2 ¼ ðbþ 1; bþ 2; ¼ ; 2bÞ

..

.

The midpoint of each bin is equivalent to the mean of its values, �Bi . We then
determine the mean number of mutations in each of these bins to obtain μ, a list
representing a course estimate of the cohort-wide local mutation load at the

midpoint of each bin.

μi ¼
P′
i \ Bi

�� ��
b

for each binBi

We perform local regression on the points ð�B; μÞ using the loess function in the
R statistical computing language. This results in L(P), a function used here to
approximate the mutation rate of each genomic position and adjust for this effect.

For each patient genome we consider a query patient q, and we create a |Pq|−
by− g matrix Mq. Vaguely, we initially populate the entries of Mq column-by-
column by listing the differences in nearest pairs of terms in the Pq and the Pj being
considered. In particular, for a given patient genome j∈ {1,2,…,g}− {q}, we pool
their set of mutations with those of Pq as a multiset

Cj ¼ fPq ∪ Pjg

and reorder the terms in increasing order to satisfy
Cj ¼ fcj1; cj2; cj3; ¼ ; cjmg;where cj1 � cj2 � cj3 � ¼ � cjm. Prior to reordering, we
store a reference to each index of Cj that derived from elements of Pq and Pj. We fill
column j of Mq by comparing each original position from the query patient with
the next highest position in the pooled multiset. Only the comparisons where ci is
originally from Pq are utilised and the i,jth entry in Mq is sequentially populated for
each of these values. For example, the i,jth entry of Mq we take the difference
between the term at the ith position originating from Pj in Cj and its adjacent term
in Cj etc. This is repeated for all values of j with the exception of the case where j=
q, leaving one empty column in Mq.

We then apply a numeric sort to every row in Mq, which correspond to the
original mutation positions in Pq. Owing to the convention we use to calculate the
pairwise distance Cj, this matrix has some useful properties. Mutations that are
closer to another mutation in the same genome Pq relative to the comparison
genome Pc are completely undefined and thus implicitly suppressed from any
further consideration. After the sort, however, the individual rows of Mq no longer
relate to the indexes in Pc. This new ordering allows us to efficiently find the
distance to the nearest mutation in the kth genome with k starting at the genome
having the nearest mutation to position i, k + 1 being the genome with the second-
nearest mutation to position i, etc. Using this property, we can approximate the
density of mutations at every original position in Pq by calculating, for each row i,
the mean of the values in the first k genomes (here, we use k= 4). We can increase
the specificity of our algorithm to ignore local increases in mutation density in
small numbers of patients by increasing k. Using the genome-wide mutation rate
approximated by L(P), we then adjust each value for local mutation rate differences
after converting to a logarithmic scale. We also correct for the total number of
mutations in genome gq, |Pq| corrected and use the genome size as a scaling
constant.

Rq
i ¼ log

Pk
j¼1 M

q
i

� �
n

þ log L Pq
� �� �

þ log
Pq

��� ���
2:8 ´ 109

0
@

1
A

This process is repeated for every genome gq such that we have points (Pq, Rq)
that can be plotted for each patient. The supersets of each, namely P′ (defined
previously) and R′= R1∪R2∪…∪Rg, are also used for subsequent analyses. To
generate a visualisation that we refer to as a “rainstorm plot” defined by an (x, y)
scatterplot (Pq, Rq) for all q∈{1,2,…,g} using distinct colour for each g with
transparency to enhance visibility of overlapping points.

Doppler Algorithm. The Doppler algorithm delineates mutation peaks using the
adjusted cohort-wide inter-mutation distance (as derived above) as input. The
values are treated as a frequency variable with index (rather than genomic position)
treated as the “time” variable. Wavelet transformations are used in signal proces-
sing to decompose a series of spatial or temporal correlated data points. This
involves transforming 1-dimensional time series data into 2-dimensional wavelet
space along a time scale. Instead of time, we use the index of the ordered set of
positions in P′, or what we hereafter refer to as “relative position”, or P′r. While the
P′r dimension is the same as in the original time/position series, a new scale is
derived from the expanded dimension. When the wavelet transform is applied to
time domain data, this scale can be thought as a pseudo frequency, which is highly
inversely correlated with frequency but does not have a simple format to transform.
If wavelet transform is on frequency domain data, scale can be thought as pseudo
time, which is highly inversely correlated to time but do not have a simple format
to transform. We treat the relative position on the chromosome as equivalent to
time such that the transformation generates a projection of mutation density along
the length of the chromosome.

There are two types of wavelet transform: discrete and continuous. For DWT
(Discrete Wavelet Transform), the series data are decomposed into an
approximation plus multiple levels of details. Approximation and detail
decomposition are based on different wavelet base functions. For CWT
(Continuous Wavelet Transform), only one basic wavelet function is used,
however, the decomposition is based on continuously changing scales and time/
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locations. We use the CWT implemented in MassSpecWavelet R package61 with no
prior and using a single variable, i.e. R′ ~ P′. Applying the CWT also generates a set
of discrete wavelet peaks, each associated with a signal-to-noise ratio (SNR).
Manual inspection of the data showed that wavelet peaks are sensitive to small
deviations in R′ values, leading to overly narrow peaks and fragmentation of some
larger peaks. We post-process wavelets individually by chromosome by removing
those with a SNR below the 95th percentile, based on all wavelets on that
chromosome where SNR ≥0. Based on the distribution of R values in the
chromosome being considered, we define ϕ as the 95th percentile and τ as the 25th

percentile of R. Peaks for which R < ϕ are removed up-front.
We define the set of positions contained by our i individual peaks as B, where

Bi= (si, si + 1,…,ei). The patient genomes represented within peak Bi,

gpeaki ¼ ðBi \ P1;Bi \ P2; ¼ ;Bi \ PgÞ

are a useful metric of the potential biological relevance of mutations in that region
to the tumour type represented by the samples. We allow the boundaries of peaks
to be refined such that si and ei are adjusted to either shrink or extend the peak size.
We allow an extension of the upper and lower boundaries, si and ei outward from
the peak of the remaining wavelet positions by considering up to 12 indexes per
side. We allow the inclusion of additional mutation positions in this range and stop
this process when a mutation is encountered with R < τ. As well, using the new
boundaries, we count the distinct number of patient genomes containing a
mutation within the peak boundaries while maximising the outer bounds of Bi. If
necessary, boundaries are reduced iteratively until the criteria are met or it becomes
impossible to meet the criteria for that peak. After this adjustment, we determine
the actual mutation rate in each peak in mutations/kb:

mrate
i ¼ 1000 ´

P′ \ Bij j
Bij j

Only the peaks satisfying the two additional criteria gpeaki

��� ��� � 4 and mrate
i � 6

are retained along with the start and end coordinates of the largest |Bi|
corresponding to the extended or contracted peak meeting this condition.

Code Availability. The source code for Rainstorm calculation and Doppler peak
detection is available on GitHub: [https://github.com/rdmorin/
mutation_rainstorm].

Data availability
Data available through the European Genome-Phenome archive 146 genome sequence
data has been deposited at the European Genome-phenome Archive. Accession number
EGAS00001002936. The 1001 genome sequence data10 were retrieved from the European
Genome-phenome Archive. Accession number EGAS00001002606 [https://www.ebi.ac.
uk/ega/studies/EGAS00001002606]
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