445 research outputs found

    X-ray and gamma ray astronomy detectors

    Get PDF
    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions

    Crop Insurance in the European Union: Lessons and Caution from the United States

    Get PDF
    Recent changes in the Common Agricultural Policy have focused attention on the possibility of an enlarged crop insurance program in Europe. Several countries in the European Union already have national crop insurance schemes, but the performance of these programs in terms of realized demand has been low. In some cases, participation in the programs remains low in spite of significant subsidies to insurance premiums. This situation can be contrasted with the federal crop insurance program in the United States, which is now the principal instrument of American agricultural policy and insured over 366 million acres in 2015. We focus on two questions: are there any justifications for subsidized crop insurance and how could such a scheme possibly be implemented in the EU? Quantitative and qualitative comparisons of the current state of crop insurance in the EU and US serve to motivate our observations

    X-ray emission from accretion disks in active galactic nuclei

    Get PDF
    We constructed a grid of relativistic models for standard high-relative-luminosity accretion α-disks around supermassive Kerr black holes (BHs) and computed X-ray spectra for their hot, effectively optically thin inner parts by taking into account general-relativity effects. They are known to be heated to high (∼106-109 K) temperatures and to cool down through the Comptonization of intrinsic thermal radiation. Their spectra are power laws with an exponential cutoff at high energies; i.e., they have the same shape as those observed in active galactic nuclei (AGNs). Fitting the observed X-ray spectra of AGNs with computed spectra allowed us to estimate the fundamental parameters of BHs (their mass and Kerr parameter) and accretion disks (luminosity and inclination to the line of sight) in 28 AGNs. We show that the Kerr parameter for BHs in AGNs is close to unity and that the disk inclination correlates with the Seyfert type of AGN, in accordance with the unification model of activity. The estimated BH masses Mx are compared with the masses Mrev determined by the reverberation mapping technique. For AGNs with luminosities close to the Eddington limit, these masses agree and the model under consideration may be valid for them. For low-relative-luminosity AGNs, the differences in masses increase with decreasing relative luminosity and their X-ray emission cannot be explained by this model. © 2002 MAIK "Nauka/Interperiodica"

    North Atlantic marine <sup>14</sup>C reservoir effects: implications for late-Holocene chronological studies

    Get PDF
    We investigated surface ocean–atmosphere 14C offsets for the later Holocene at eight locations in the eastern North Atlantic. This resulted in 11 new &#916;R assessments for the west coast of Ireland, the Outer Hebrides, the north coast of the Scottish mainland, the Orkney Isles and the Shetland Isles over the period 1300–500 BP. Assessments were made using a robust Multiple Paired Sample (MPS) approach, which is designed to maximize the accuracy of &#916;R determinations. Assessments are placed in context with other available data to enable reconstruction of a realistic picture of surface ocean 14C activity over the Holocene period within the North Atlantic region

    Marine20—the marine radiocarbon age calibration curve (0 – 55,000 cal BP)

    Get PDF
    T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9, “Improving the Measurement of Time Using Radiocarbon”. M Butzin is supported by the German Federal Ministry of Education and Research (BMBF), as Research for Sustainability initiative (FONA); www.fona.de through the PalMod project (grant numbers: 01LP1505B, 01LP1919A). E. Bard is supported by EQUIPEX ASTER-CEREGE and ANR CARBOTRYDH. Meetings of the IntCal Marine Focus group have been supported by Collège de France.The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/.Publisher PDFPeer reviewe

    The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects

    Get PDF
    When a carbon reservoir has a lower radiocarbon content than the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, that is, the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs, and the fate of atmospheric CO2, all of which impact Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects

    Oxygen isotope dendrochronology of Llwyn Celyn; One of the oldest houses in Wales

    Get PDF
    We report the application of oxygen isotope dendrochronology to date a high-status and remarkably unaltered late medieval hall house on the eastern border of South Wales. The oak timbers have either short and complacent ring series, or very strong growth disturbance, and none were suitable for ring-width dendrochronology. By using stable oxygen isotopes from the latewood cellulose, rather than ring widths, it was possible to cross-match and date all 14 timber samples and to provide felling dates related to several phases of building. The hall and solar cross-wing were constructed shortly after 1420CE, which is remarkably early. The house was upgraded using timbers felled in the winter of 1695/6CE by ceiling over of the hall and inserting a chimney. A separate small domestic building was added at the same time and the addition of the kitchen is likely to be contemporaneous. A substantial beast house was added a few years before the house was refurbished, emphasising the importance of cattle as the main source of wealth. A small barn with timbers felled in spring 1843 CE was added later. Llwyn Celyn is one of the most important domestic buildings in Wales, but without the new approach none of the phases of its evolution could have been dated precisely. Oxygen isotope dendrochronology has enormous potential for dating timbers that have small numbers of rings and/or show severe growth disturbance and it works well in regions where tree growth is not strongly constrained by climate. The research was generously supported by the Leverhulme Trust, Natural Environment Research Council, Landmark Trust and the UK National Lottery Heritage Fund

    Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)

    Get PDF
    The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data bas

    Factors associated with care-related Quality of Life of adults with Intellectual Disabilities in England: Implications for Policy and Practice

    Get PDF
    Over the last three decades, quality of life (QoL) has been advocated as an indicator of social care outcomes for adults with intellectual disabilities. In England, the Adult Social Care Survey (ASCS) is conducted annually by local authorities to contribute to the evidence base of the care-related QoL of people receiving publicly-funded adult social care. This study explores relationships between QoL and non-care related factors to identify relationships that could inform social care policy and practice. Cross-sectional data collected from 13,642 adults who participated in the 2011 and 2012 ASCS were analysed using regression to explore the factors associated with QoL measured using the Adult Social Care Outcomes Toolkit (ASCOT). Self-rated health, rating of the suitability of home design and anxiety/depression were all found to be significantly associated with ASCOT. Other individual and survey completion factors were also found to have weak significant relationships with ASCOT. The models also indicate that there was an increase in overall ASCOT-QoL and in five of the eight ASCOT domains (Personal comfort and cleanliness, Safety, Social participation, Occupation and Dignity) between 2011 and 2012. These findings demonstrate the potential value of QoL data for informing policy for people with intellectual disabilities by identifying key factors associated with QoL, the characteristics of those at risk of lower QoL, and QoL domains that could be targeted for improvement over time. Future research should establish causal relationships and explore the risk-adjustment of scores to account for variation outside of the control of social care support
    corecore