126 research outputs found

    A Stochastic Multi-scale Approach for Numerical Modeling of Complex Materials - Application to Uniaxial Cyclic Response of Concrete

    Full text link
    In complex materials, numerous intertwined phenomena underlie the overall response at macroscale. These phenomena can pertain to different engineering fields (mechanical , chemical, electrical), occur at different scales, can appear as uncertain, and are nonlinear. Interacting with complex materials thus calls for developing nonlinear computational approaches where multi-scale techniques that grasp key phenomena at the relevant scale need to be mingled with stochastic methods accounting for uncertainties. In this chapter, we develop such a computational approach for modeling the mechanical response of a representative volume of concrete in uniaxial cyclic loading. A mesoscale is defined such that it represents an equivalent heterogeneous medium: nonlinear local response is modeled in the framework of Thermodynamics with Internal Variables; spatial variability of the local response is represented by correlated random vector fields generated with the Spectral Representation Method. Macroscale response is recovered through standard ho-mogenization procedure from Micromechanics and shows salient features of the uniaxial cyclic response of concrete that are not explicitly modeled at mesoscale.Comment: Computational Methods for Solids and Fluids, 41, Springer International Publishing, pp.123-160, 2016, Computational Methods in Applied Sciences, 978-3-319-27994-

    Overfishing of top predators eroded the resilience of the Black Sea system regardless of the climate and anthropogenic conditions

    Get PDF
    It is well known that human activities, such as harvesting, have had major direct effects on marine ecosystems. However, it is far less acknowledged that human activities in the surroundings might have important effects on marine systems. There is growing evidence suggesting that major reorganization (i.e., a regime shift) is a common feature in the temporal evolution of a marine system. Here we show, and quantify, the interaction of human activities (nutrient upload) with a favourable climate (run-off) and its contribution to the eutrophication of the Black Sea in the 1980s. Based on virtual analysis of the bottom-up (eutrophication) vs. top-down (trophic cascades) effects, we found that an earlier onset of eutrophication could have counteracted the restructuring of the trophic regulation at the base of the food web that resulted from the depletion of top predators in the 1970s. These enhanced bottom-up effects would, however, not propagate upwards in the food web beyond the zooplankton level. Our simulations identified the removal of apex predators as a key element in terms of loss of resilience that inevitably leads to a reorganization. Once the food web has been truncated, the type and magnitude of interventions on the group replacing the apex predator as the new upper trophic level have no effect in preventing the trophic cascade. By characterizing the tipping point at which increased bottom-up forcing exactly counteracts the top-down cascading effects, our results emphasize the importance of a comprehensive analysis that take into account all structuring forces at play (including those beyond the marine system) at a given time.EUR-OCEANS Integration Project 2007; Marie Curie Intra-European fellowship [FP6-2005-Mobility-5]; Marie Curie European Reintegration Grant [FP7-People- 2009-RG]; EU WETLANET, KNOWSEAS, and MEECE, UK NERC QUEST; US National Science Foundation (DMS-0935617

    Silica burial enhanced by iron limitation in oceanic upwelling margins

    Get PDF
    In large swaths of the ocean, primary production by diatoms may be limited by the availability of silica, which in turn limits the biological uptake of carbon dioxide. The burial of biogenic silica in the form of opal is the main sink of marine silicon. Opal burial occurs in equal parts in iron-limited open-ocean provinces and upwelling margins, especially the eastern Pacific upwelling zone. However, it is unclear why opal burial is so efficient in this margin. Here we measure fluxes of biogenic material, concentrations of diatom-bound iron and silicon isotope ratios using sediment traps and a sediment core from the Gulf of California upwelling margin. In the sediment trap material, we find that periods of intense upwelling are associated with transient iron limitation that results in a high export of silica relative to organic carbon. A similar correlation between enhanced silica burial and iron limitation is evident in the sediment core, which spans the past 26,000 years. A global compilation also indicates that hotspots of silicon burial in the ocean are all characterized by high silica to organic carbon export ratios, a diagnostic trait for diatoms growing under iron stress. We therefore propose that prevailing conditions of silica limitation in the ocean are largely caused by iron deficiency imposing an indirect constraint on oceanic carbon uptake

    Biogeochemical responses to late-winter storms in the Sargasso Sea, III—Estimates of export production using 234Th:238U disequilibria and sediment traps

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 56 (2009): 875-891, doi:10.1016/j.dsr.2009.01.008.Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2-4 fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems was dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2 to 3.7 m d-1. Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, 1-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91 ± 0.20 to 4.92 ± 1.22 mmol C m-2 d-1, 0.25 ± 0.08 to 0.54 ± 0.09 mmol N m-2 d-1, and 0.22 ± 0.04 to 0.50 ± 0.06 mmol Si m-2 d-1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1-11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3 - uptake derived new production rates, suggested that only a fraction, < 35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p < 0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65 - 95% (average 86 ± 14%) of the total POC export measured in this study was due to diatoms. Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported given the large association of this material with diatoms during these periods.This study was funded by the National Science Foundation (Chemical Oceanography Grants OCE-0244612 and OCE-0241645)

    The biogeochemical impact of glacial meltwater from Southwest Greenland

    Get PDF
    Biogeochemical cycling in high-latitude regions has a disproportionate impact on global nutrient budgets. Here, we introduce a holistic, multi-disciplinary framework for elucidating the influence of glacial meltwaters, shelf currents, and biological production on biogeochemical cycling in high-latitude continental margins, with a focus on the silica cycle. Our findings highlight the impact of significant glacial discharge on nutrient supply to shelf and slope waters, as well as surface and benthic production in these regions, over a range of timescales from days to thousands of years. Whilst biological uptake in fjords and strong diatom activity in coastal waters maintains low dissolved silicon concentrations in surface waters, we find important but spatially heterogeneous additions of particulates into the system, which are transported rapidly away from the shore. We expect the glacially-derived particles – together with biogenic silica tests – to be cycled rapidly through shallow sediments, resulting in a strong benthic flux of dissolved silicon. Entrainment of this benthic silicon into boundary currents may supply an important source of this key nutrient into the Labrador Sea, and is also likely to recirculate back into the deep fjords inshore. This study illustrates how geochemical and oceanographic analyses can be used together to probe further into modern nutrient cycling in this region, as well as the palaeoclimatological approaches to investigating changes in glacial meltwater discharge through time, especially during periods of rapid climatic change in the Late Quaternary

    Experimental characterization and modeling of energy dissipation in reinforced concrete beams subjected to cyclic loading

    No full text
    The way of modeling the damping phenomenon in nonlinear time history analysis is still an opened question and remains a motivating challenge in the scientific community. The well-known approach lies in considering non-physical viscous forces that are proportional to the velocity field. A damping matrix must be defined and its identification is not based on physical considerations. This study aims at exploring the possibility of identifying a local constitutive model in order to account for damping in a natural way. To reach this objective, an experimental campaign based on reinforced concrete beams subjected to reverse three-point bending tests is presented. These results allow identifying in an accurate way the hysteretic scheme used to take into account the hysteretic phenomenon. In particular, an ad hoc hysteretic scheme is shown to be consistent in terms of energy dissipation. Numerical free vibration tests are then carried out in order to demonstrate that the use of a viscous damping can be avoided if the local constitutive concrete model accounting for hysteretic phenomenon is accurately identified

    Microbial mediation of benthic biogenic silica dissolution

    Get PDF
    Pore water profiles from 24 stations in the South Atlantic (located in the Guinea, Angola, Cape, Guyana, and Argentine basins) show good correlations of oxygen and silicon, suggesting microbially mediated dissolution of biogenic silica. We used simple analytical transport and reaction models to show the tight coupling of the reconstructed process kinetics of aerobic respiration and silicon regeneration. A generic transport and reaction model successfully reproduced the majority of Si pore water profiles from aerobic respiration rates, confirming that the dissolution of biogenic silica (BSi) occurs proportionally to O 2 consumption. Possibly limited to well-oxygenated sediments poor in BSi, benthic Si fluxes can be inferred from O 2 uptake with satisfactory accuracy. Compared to aerobic respiration kinetics, the solubility of BSi emerged as a less influential parameter for silicon regeneration. Understanding the role of bacteria for silicon regeneration requires further investigations, some of which are outlined. The proposed aerobic respiration control of benthic silicon cycling is suitable for benthic–pelagic models. The empirical relation of BSi dissolution to aerobic respiration can be used for regionalization assessments and estimates of the silicon budget to increase the understanding of global primary and export production patterns
    corecore