64 research outputs found

    Final Project Report for a Lighter Mobility Cart

    Get PDF
    This report outlines the overview of our final cart design and evaluates the design’s compliance to the project requirements, constraints, and objectives. This report also includes recommendations, future improvements and tests that to be completed after the shelter-in-place order has been rescinded in Bexar County. Our final design saves 10.41 lbs in Fusion 360. This means that we met the major requirement of our design since the cart is 10% to 20% lighter than the original reference cart weight of 100 lbs. Our design changes include reducing the gauge of some of the parts of the cart (the main beam and gooseneck of the chassis and the handlebars). Additionally we reduced the amount of wood on the basket and chair by reducing the width or thickness of some parts or removing non-load bearing portions that withstood our loading conditions in simulations and physical testing. The major design changes include changing from a wood to a fabric chair back as well as going from a rigid wood trailer to a lighter, removable trailer on the basket. A full discussion of our design changes with pictures can be seen later in the report. In this report, we analysed our test results to determine how well the final design met the requirements. We conducted finite element simulations that evaluated the cart’s four subsystems, tractor, chassis, basket, and chair, as well as the whole cart. The physical tests for the first prototype are discussed and the simulation results for the final prototype. Due to the COVID-19 shelter-in-place order, the Cartologists were unable to physically test the final prototype. However, based on the results from the physical testing for the first prototype and Fusion 360 simulation results for the final prototype, we were able to confidently meet the majority of our requirements. The only requirement and constraint that was not met was that the cart should cost no more than the reference cart (~$300). The final prototype has a projected cost 1.2% higher than the reference cart. However, our sponsor at Mobility Worldwide indicated that a slight cost increase is acceptable as long as it reduces weight, and/or adds a valuable feature. Additionally, the cost estimate could be lower depending on discounts from buying in bulk or from local suppliers. We will also provide Mobility Worldwide a drawing package of our final design. With it they can build and evaluate the final prototype. Additionally, future work should include building, testing and evaluating our two options for the basket trailer, which secures items in the back of the cart, described in detail in Appendix C. The two methods are a slidable plate, or a net/fabric mesh. Both methods are presented in the report for Mobility Worldwide’s evaluation and final consideration

    LIGO Analogy Lab—A Set of Undergraduate Lab Experiments to Demonstrate Some Principles of Gravitational Wave Detection

    Get PDF
    The first direct detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in September 2015 proved their existence, as predicted by Einstein\u27s General Theory of Relativity, and ushered in the era of gravitational-wave interferometry. In this article, we present a set of lab course experiments at different levels of advancement, which give students insight into the basic LIGO operating principle and advanced detection techniques. Starting with methods for folding an optical cavity, we advance to analogy experiments with sound waves that can be detected with a Michelson interferometer with an optical cavity arm. In that experiment, students also learn how the sensitivity of the device can be tuned. In a last step, we show how optical heterodyne detection (the mixing of a signal with a reference oscillator) was used in Initial LIGO. We hope these experiments not only give students an understanding of some LIGO techniques but also awaken a fascination for how unimaginably tiny signals, created by powerful cosmic events a billion years ago or earlier, can be detected today here on Earth

    The effect of sport for LIFE: all island in children from low socio-economic status: a clustered randomized controlled trial

    Get PDF
    Abstract Background School-based interventions offer the opportunity to increase physical activity, health-related quality of life (HRQOL) and nutritional behaviours, yet methodological limitations hinder current research, particularly among under-represented children from low socio-economic status (SES). The aim was to determine the effect of a 12-week physical activity programme, Sport for LIFE: All Island (SFL:AI), on physical activity levels, HRQOL, and nutritional attitudes and behaviours in children of low SES across the island of Ireland. Methods A 2 (groups) × 4 (data collection points) clustered randomised controlled trial was conducted comprising an intervention group who received SFL:AI for 12 weeks, and a waiting-list control condition. In total 740 children (381 boys, 359 girls) aged 8–9 years (mean = 8.7; SD = .50) from 27 schools across four regions of Ireland (Ulster, Leinster, Connacht and Munster) took part. Physical activity was measured by accelerometers, and children completed a validated questionnaire at baseline, mid (i.e. 6-weeks), post-intervention (i.e. 12 weeks) and follow-up (i.e. 3 months post-intervention). Results No significant interaction effects for the intervention were found on any of the study outcomes. Main effects were reported for physical well-being, parental relations and autonomy and financial resources, as well as sweetened beverages, environment and intake, and attitude to vegetables. However, these changes were not statistically attributable to the intervention. Conclusions It remains unclear if school-based physical activity interventions can improve HRQOL through physical activity with children from low SES. Logistical and methodological considerations are outlined to explore the null effect of the programme, and to provide suggestions for future research and practice. Trial registration Trial registration number: ISRCTN76261698. Name of registry: ICRCTN. Date of registration: 23/08/2017. Date of enrolment: September 2014

    Essential Content for Teaching Implementation Practice in Healthcare: A Mixed-Methods Study of Teams Offering Capacity-Building Initiatives

    Get PDF
    Background Applying the knowledge gained through implementation science can support the uptake of research evidence into practice; however, those doing and supporting implementation (implementation practitioners) may face barriers to applying implementation science in their work. One strategy to enhance individuals’ and teams’ ability to apply implementation science in practice is through training and professional development opportunities (capacity-building initiatives). Although there is an increasing demand for and offerings of implementation practice capacity-building initiatives, there is no universal agreement on what content should be included. In this study we aimed to explore what capacity-building developers and deliverers identify as essential training content for teaching implementation practice. Methods We conducted a convergent mixed-methods study with participants who had developed and/or delivered a capacity-building initiative focused on teaching implementation practice. Participants completed an online questionnaire to provide details on their capacity-building initiatives; took part in an interview or focus group to explore their questionnaire responses in depth; and offered course materials for review. We analyzed a subset of data that focused on the capacity-building initiatives’ content and curriculum. We used descriptive statistics for quantitative data and conventional content analysis for qualitative data, with the data sets merged during the analytic phase. We presented frequency counts for each category to highlight commonalities and differences across capacity-building initiatives. Results Thirty-three individuals representing 20 capacity-building initiatives participated. Study participants identified several core content areas included in their capacity-building initiatives: (1) taking a process approach to implementation; (2) identifying and applying implementation theories, models, frameworks, and approaches; (3) learning implementation steps and skills; (4) developing relational skills. In addition, study participants described offering applied and pragmatic content (e.g., tools and resources), and tailoring and evolving the capacity-building initiative content to address emerging trends in implementation science. Study participants highlighted some challenges learners face when acquiring and applying implementation practice knowledge and skills. Conclusions This study synthesized what experienced capacity-building initiative developers and deliverers identify as essential content for teaching implementation practice. These findings can inform the development, refinement, and delivery of capacity-building initiatives, as well as future research directions, to enhance the translation of implementation science into practice

    A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils?

    Get PDF
    Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past

    GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses

    Get PDF
    We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO’s and Virgo’s third observing run. The signal was recorded on April 12, 2019 at 05∶30∶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: a ∌30 M_⊙ black hole merged with a ∌8 M_⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein’s general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs

    Properties and Astrophysical Implications of the 150 M_⊙ Binary Black Hole Merger GW190521

    Get PDF
    The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, 85âșÂČÂč₋₁₄ M_⊙ and 66âșÂč⁷₋₁₈ M_⊙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65–120 M_⊙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger 142âșÂČ⁾₋₁₆ M_⊙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular BBH coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of the coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be 0.13_(-0.11)^(+0.30) Gpc⁻³ yr⁻Âč. We discuss the astrophysical implications of GW190521 for stellar collapse and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescences, or via hierarchical mergers of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary
    • 

    corecore