99 research outputs found

    Diversity and Distribution of Borrelia hermsii

    Get PDF
    Multilocus sequence analysis and laboratory experiments suggest that birds may play a role in maintaining and dispersing this pathogen

    Detection of Lassa Virus, Mali

    Get PDF
    To determine whether Lassa virus was circulating in southern Mali, we tested samples from small mammals from 3 villages, including Soromba, where in 2009 a British citizen probably contracted a lethal Lassa virus infection. We report the isolation and genetic characterization of Lassa virus from an area previously unknown for Lassa fever

    Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    Get PDF
    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Transovarial Transmission of Borrelia hermsii by Its Tick Vector and Reservoir Host Ornithodoros hermsi

    No full text
    Transovarial passage of relapsing fever spirochetes (Borrelia species) by infected female argasid ticks to their progeny is a widespread phenomenon. Yet this form of vertical inheritance has been considered rare for the North American tick Ornithodoros hermsi infected with Borrelia hermsii. A laboratory colony of O. hermsi was established from a single infected female and two infected males that produced a population of ticks with a high prevalence of transovarial transmission based on infection assays of single and pooled ticks feeding on mice and immunofluorescence microscopy of eggs and larvae. Thirty-eight of forty-five (84.4%) larval cohorts (groups of larvae originating from the same egg clutch) transmitted B. hermsii to mice over four and a half years, and one hundred and three single and one hundred and fifty-three pooled nymphal and adult ticks transmitted spirochetes during two hundred and fourteen of two hundred and fifty-six (83.6%) feedings on mice over seven and a half years. The perpetuation of B. hermsii for many years by infected ticks only (without acquisition of spirochetes from vertebrate hosts) demonstrates the reservoir competence of O. hermsi. B. hermsii produced the variable tick protein in eggs and unfed larvae infected by transovarial transmission, leading to speculation of the possible steps in the evolution of borreliae from a tick-borne symbiont to a tick-transmitted parasite of vertebrates

    Host associations and genomic diversity of Borrelia hermsii in an endemic focus of tick-borne relapsing fever in western North America

    No full text
    Abstract Background An unrecognized focus of tick-borne relapsing fever caused by Borrelia hermsii was identified in 2002 when five people became infected on Wild Horse Island in Flathead Lake, Montana. The terrestrial small mammal community on the island is composed primarily of pine squirrels (Tamiasciurus hudsonicus) and deer mice (Peromyscus maniculatus), neither of which was known as a natural host for the spirochete. Thus a 3-year study was performed to identify small mammals as hosts for B. hermsii. Methods Small mammals were captured alive on two island and three mainland sites, blood samples were collected and examined for spirochetes, and serological tests performed to detect anti-B. hermsii antibodies. Ornithodoros hermsi ticks were collected and fed on laboratory mice to assess infection. Genomic DNA samples from spirochetes isolated from infected mammals and ticks were analyzed by multilocus sequence typing. Results Eighteen pine squirrels and one deer mouse had detectable spirochetemias when captured, from which 12 isolates of B. hermsii were established. Most pine squirrels were seropositive, and the five species of sciurids combined had a significantly higher prevalence of seropositive animals than did the other six small mammal species captured. The greater diversity of small mammals on the mainland in contrast to the islands demonstrated that other species in addition to pine squirrels were also involved in the maintenance of B. hermsii at Flathead Lake. Ornithodoros hermsi ticks produced an additional 12 isolates of B. hermsii and multilocus sequence typing identified both genomic groups of B. hermsii described previously, and identified a new genomic subdivision. Experimental infections of deer mice with two strains of B. hermsii demonstrated that these animals were susceptible to infection with spirochetes belonging to Genomic Group II but not Genomic Group I. Conclusions Pine squirrels are the primary hosts for the maintenance of B. hermsii on the islands in Flathead Lake, however serological evidence showed that numerous additional species are also involved on the mainland. Future studies testing the susceptibility of several small mammal species to infection with different genetic types of B. hermsii will help define their role as hosts in this and other endemic foci
    corecore