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Abstract 

The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of 

children ever born (NEB) – has a strong relationship with fitness, human development, infertility and 

risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the 

underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide 

association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. 

We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-

based genome-wide association study, and four additional loci in a gene-based effort. These loci 

harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – 

in human reproduction and infertility, thereby increasing our understanding of these complex traits. 

Introduction 

Human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – 

has been associated with human development,1,2 infertility3,4 and neuropsychiatric disorders5. 

Reproductive tempo (AFB) and quantum (NEB) are cross-cutting topics in the medical, biological, 

evolutionary and social sciences and central in national and international policies.6 Advanced societies 

experienced a rapid postponement of AFB, with the mean AFB of women now being 28-29 years in 

many countries.7 This increase in AFB has been linked to lower fertility rates, unprecedented 

childlessness (~20%) and infertility, which affects 10 to 15 % of couples.8 An estimated 48.5 million 
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couples worldwide are infertile, with a large part of subfertility, particularly in men, remaining 

unexplained.9 Although infertility has been related to advanced AFB, ovulation defects, 

spermatogenic failure, and single- or polygenic defects, their causal effects remain unsubstantiated.10 

Until now, genetic and clinical research has focussed on proximal infertility phenotypes.3,4,10,11 AFB 

and NEB represent accurate measures of complex reproductive outcomes, are frequently recorded and 

consistently measured, and are key parameters for demographic population forecasting.12 There is 

evidence of a genetic component underlying reproduction, with heritability estimates of up to 50% for 

AFB and NEB (Supplementary Figure 1).6 A recent study attributed 15% of the variance of AFB and 

10% of NEB to common genetic variants.13 There are also sex-specific differences in human 

reproduction, related to the timing of fertility, fecundability and sex-genotype interactions 

(Supplementary Note). Researchers have given less attention to traits such as NEB due to an 

erroneous and frequently repeated misinterpretation of Fisher’s14 Fundamental Theorem of Natural 

Selection that the additive genetic variance in fitness should be close to zero. The misreading had a 

naively intuitive appeal: genes that reduce fitness should have been less frequently passed on. Fisher, 

however, actually argues that fitness is moderately heritable in human populations (for a discussion 

see the Supplementary Note). Since no established genes are currently available for clinical testing of 

infertility,10 isolating genetic loci and their causative effects has the potential to provide new insights 

into the etiology of reproductive diseases and novel diagnostic and clinical technologies for infertility 

treatment. 

RESULTS 

We report the largest meta-analysis of genome-wide association studies (GWAS) to date of 251,151 

individuals for AFB and 343,072 for NEB from a total of 62 cohorts of European ancestry. We 

identify 12 independent loci (10 of which are novel and 2 previously identified in a study on age at 

first sexual intercourse11) that are significantly associated with AFB and/or NEB in men, women 

and/or both sexes combined (Table 1). Follow-up analyses identified a number of genetic variants and 

genes that likely drive GWAS associations. We also quantified the genetic overlap with biologically 

adjacent reproductive, developmental, neuropsychiatric and behavioral phenotypes. A detailed 

description of all materials and methods is available in the Supplementary Note. 

Meta-analysis of GWAS 

Associations of AFB (mean ± SD 26.8±4.78 years) and/or NEB (mean ± SD 2.3±1.43 children) with 

NCBI build 37 HapMap Phase 2 imputed SNPs were examined in 62 cohorts using multiple linear 

regression under an additive model, in men and women separately (Supplementary Note). 

Associations were adjusted for principal components – to reduce confounding by population 

stratification15 – as well as for the birth year of the respondent and its square and cubic to control for 
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non-linear birth cohort effects (Supplementary Note and Supplementary Tables 1-,2 ). NEB was 

assessed only for those who had completed their reproductive period (age ≥ 45 women; age ≥ 55 

men), while AFB was only assessed for those who were parous. Quality control (QC) was conducted 

in two independent centers using QCGWAS16 and EasyQC17 (Supplementary Note). Results were 

subsequently meta-analyzed for the 2.4M SNPs that passed QC filters (Supplementary Note) and 

reported for men and women combined and separately. 

We applied a single genomic control at the cohort level and meta-analyzed results using a sample-size 

weighted fixed effect method in METAL (Supplementary Note). The PLINK clumping function 

isolated ‘lead SNPs’ – i.e. those with the lowest P-value for association that are independently 

associated – using an r2 threshold of 0.1 and distance threshold of 500 kb. For AFB, we identified ten 

genome-wide significantly associated loci (i.e., P<5x10-8 for combined and P<1.67x10-8 for sex-

specific results adjusted for multiple testing) of which nine were significantly associated in both sexes 

combined and one in women only (N=154,839) (Figure 1a, Table 1). Three loci were significantly 

associated with NEB: two in both sexes combined and one in men only (N=103,736) (Figure 1b, 

Table 1, Supplementary Note). One locus on Chr 1 reached significance for association with both 

AFB and NEB with an r2 of 0.57 between the two lead SNPs, suggesting a shared genetic basis for the 

two traits (Table 2). A statistical test of sex-specific effects confirms that differences are mainly due 

to variation in sample size and not variation in effect sizes (Supplementary Note).  

As for other complex traits18, the Q-Q plots of the meta-analyses exhibit strong inflation of low P-

values (Figure 2), suggesting that although cohorts controlled for the top principal components and 

cohort-level genomic control was applied (Supplementary Note), residual population stratification 

may remain. However, the LD Score intercept method19 as well as a series of individual and within-

family regression analyses using polygenic scores as predictors20,21 (Supplementary Note) indicated 

that the observed inflation is almost entirely attributable to a true polygenic signal, rather than 

population stratification. 

Gene-based GWAS 

To increase the power to find statistically significant associations and causal genes, we additionally 

performed a gene-based GWAS using VEGAS.22,23 The results confirmed top hits from the single-

SNP analyses. For AFB, seven loci from the SNP-based GWAS were also represented in the gene-

based analysis (Supplementary Table 3), and three additional loci emerged, represented by SLF2 (Chr 

10), ENO4 (Chr 10) and TRAF3-AMN (Chr 14). For NEB, one locus from the SNP-based GWAS was 

represented in the gene-based analysis – i.e. GATAD2B (Chr 1) – and one novel locus on Chr 17 was 

identified (Supplementary Table 4). 

Causal variants 
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To identify functional and potentially causal variants – coding or regulatory – within loci identified in 

the SNP-based GWAS (Table 1), we first performed an in silico sequencing annotation analysis using 

the post-GWAS pipeline reported by Vaez et al.24 This showed that rs10908557 on Chr 1 is in high 

LD with non-synonymous SNPs in CRTC2 (rs11264680; r2=0.98) and CREB3L4 (rs11264743; 

r2=0.94) (see Causal genes, Supplementary Table 5). Interestingly, rs11264743 is considered 

‘deleterious’ and ‘probably damaging’ by SIFT and PolyPhen, respectively (Ensembl release 83). In 

addition, rs2777888 on Chr 3 is in high LD with two non-synonymous SNPs in MST1R (rs2230590; 

r2=0.95 and rs1062633; r2=0.95) (Table 1, Supplementary Table 5). 

We subsequently performed a comprehensive analysis using results from the ENCODE25 and 

RoadMap Epigenomics26 projects as integrated in RegulomeDB,27 to identify variants that likely 

influence downstream gene expression via regulatory pathways. Amongst all SNPs that reached 

P<5x10-8 in the meta-analyses (N=322), 50 SNPs in five loci show the most evidence of having 

functional consequences (Table 1, Supplementary Table 6). Two sets of SNPs on Chr 1 (18 SNPs) 

and Chr 3 (25 SNPs) particularly stand out. The most promising SNP in the Chr 1 locus (rs6680140) 

is located in an H3K27ac mark, often found near active regulatory elements, and lies in a DNaseI 

hypersensitivity cluster where eight proteins are anticipated to bind. One of these proteins is cAMP 

responsive element binding (CREB) binding protein, encoded by CREBBP (see Causal genes). In the 

Chr 3 locus, rs2526397 is located in a transcription factor-binding site and is an eQTL for HYAL3 in 

monocytes, while rs2247510 and rs1800688 are located in H3K27ac sites and DNaseI 

hypersensitivity clusters where a large number of transcription factors are expected to bind (see 

Causal genes, Supplementary Table 6). An analysis using Haplotter showed that rs2247510 and 

rs7628058 in the Chr 3 locus are amongst the 5% of signals that show most evidence of positive 

selection in the population. The same applies to the lead SNP of the Chr 14 locus for NEB 

(rs2415984). 

Causal genes 

Information on the function and anticipated relevance of genes in the 12 loci identified in the SNP-

based GWAS that are most likely to be causal based on all evidence discussed below is provided in 

Table 2. 

Cis and trans eQTL and meQTL analyses 

Identifying alterations in gene methylation status and/or expression levels in relation to GWAS-

identified variants may help prioritize causal genes. We examined associations with gene expression 

and methylation status for the 12 independent lead SNPs in whole-blood BIOS expression (e)QTL 

(N=2,116) and methylation (me)QTL databases in cis and trans (N=3,841). 28,29 Seven SNPs were 

associated with gene expression in cis of 54 unique genes (Table 1, Supplementary Table 7). Five of 
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the seven SNPs were in high LD (r2>0.8) with the strongest eQTL of at least one of the genes within 

the corresponding loci, indicating that the SNP associated with AFB or NEB and the SNP most 

significantly associated with expression tag the same functional site, i.e., rs10908557 (associated with 

the expression of CRTC2 and SLC39A1), rs1160544 (AFF3), rs2777888 (RBM6, RNF123 and RBM5), 

rs2721195 (CYHR1, GPT, RECQL4 and PPP1R16A) and rs293566 (NOL4L). Three SNPs were 

associated with the expression of a total of eight genes in trans (Table 1, Supplementary Table 8). Of 

these SNPs, only rs2777888 was in high LD (r2>0.8) with the strongest eQTL for three of its five 

associated genes: LRFN1, LAMP2 and FGD3. 

The meQTL analysis showed that 11 of the 12 independent lead SNPs were associated with DNA 

methylation of a total of 131 unique genes in cis (Table 1, Supplementary Table 9). Seven of the 11 

SNPs were in high LD (r2>0.8) with the strongest meQTL of one of the corresponding methylation 

sites, i.e., rs10908557 (associated with methylation of CRTC2, SLC39A1, CREB3L4, DENND4B and 

RAB13), rs1160544 (AFF3), rs2777888 (CAMKV), rs6885307 (C5orf34), rs10056247 (JADE2), 

rs2721195 (CYHR1) and rs13161115 (EFNA5). Three of the SNPs were associated with the same 

genes for both methylation and gene expression in cis: rs10908557 (CRTC2), rs1160544 (AFF3) and 

rs2721195 (CYHR1) (Supplementary Tables 7,9). Three SNPs were associated with methylation of a 

total of ten genes in trans (Table 1, Supplementary Table 10). Of these SNPs, only rs2777888 was in 

high LD (r2>0.8) with the strongest meQTL of a corresponding methylation site (ASAP3). Of note: 

rs2777888 was also a trans eQTL. 

Gene prioritization  

We used four publicly available bioinformatics tools to systematically identify genes that are more 

likely than neighboring genes to cause the associations identified by our GWAS. Of all genes that 

reached P<0.05 in analyses using Endeavour,30 MetaRanker31 and ToppGene,32 eight genes were 

prioritized for both AFB and NEB: TPM3, GRM7, TKT, MAGI2, PTPRD, PTPRM, RORA and WT1. 

Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT) – a fourth, 

comprehensive and unbiased recently described gene prioritization tool33 – identified three genes in 

GWAS significant loci as likely being causal for AFB (MON1A, RBM6 and U73166.2) 

(Supplementary Tables 11, 12). 

Gene-based results from RegulomeDB 

An analysis using RegulomeDB identified 50 SNPs in five loci that most likely have regulatory 

consequences (see Causal variants, Supplementary Table 6). Eighteen and 25 of these SNPs are 

within the Chr 1 and Chr 3 loci, respectively. Amongst the genes that – at a protein level – bind at the 

site of one or more of the 18 variants in the locus on Chr 1 are CREBBP, HNF4A, CDX2 and ERG. 

These genes may act upstream in the causal pathway and influence the expression of causal genes at 
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this locus. Of the 25 SNPs on Chr 3, ten were eQTLs for RBM6 in monocytes, and seven were eQTLs 

for HYAL3 in monocytes. Amongst the genes that – at a protein level – bind at rs2247510 and 

rs1800688 in the Chr 3 locus are ARID3A, REST and TFAP2C, as well as HNF4A and CDX2, which 

also bind at the Chr 1 locus. 

Five genes encode proteins that bind at the site of both SNPs on Chr 2 that reach P<5x10-8 in the 

meta-analysis of GWAS. One of these is REST (see Chr 3 locus), another one – ESR1 – is the most 

likely causal gene in the Chr 6 locus. 

Functional network and enrichment analyses 

Functional network analysis using five prioritized candidate gene sets as input (Supplementary Note) 

showed no significantly enriched biological function. No biological function was significantly 

enriched after correction for multiple testing using the Benjamini-Hochberg procedure. Similarly, no 

reconstituted gene sets and cell or tissue types were significantly enriched in the GWAS meta-analysis 

results based on results from the DEPICT analysis (Supplementary Tables 13-20). The lack of 

significantly enriched genes, tissue sets and biological functions reflects the need for a larger sample 

size but also the distal nature of the phenotypes, which are influenced by a mixture of biological, 

psychological and socio-environmental factors.  

Polygenic prediction 

To assess the predictive power of our results, we produced polygenic scores for AFB and NEB using 

sets of SNPs whose nominal P-values ranged from P<5x10-8 (i.e. using only genome-wide significant 

SNPs) to 1 (using all SNPs that passed quality control) using PRSice34 (Supplementary Note). We 

then performed a series of four different out-of-sample predictions in four independent cohorts: HRS, 

Lifelines, STR and TwinsUK. Across the four cohorts, the mean predictive power of a polygenic 

score constructed from all measured SNPs is 0.9% for AFB and 0.2% for NEB (Supplementary Figure 

2). Despite the low predictive power of the polygenic scores, the results showed that a 1 standard 

deviation (SD) increase of the NEB polygenic score is associated with a 9% (95% CI 5%–13%) 

decrease in the probability for women to remain childless, with no significant association in men 

(Supplementary Table 21). When we control for right-censored data using a survival model for AFB, 

we found that a 1SD increase in the AFB polygenic score is associated with an 8% (95% CI 7%–10%) 

reduction in the hazard ratio of reproduction in women and 3% (95% CI 1%–5%) in men 

(Supplementary Table 22). As an additional test, we examined whether the aforementioned polygenic 

scores for AFB and NEB can predict related fertility traits such as age at menopause and age at 

menarche (Supplementary Table 23). Our estimates indicate that a 1SD increase of the AFB polygenic 

score is associated with a 3% decrease in age at natural menopause (95% CI 1%–5% ) and a 20 day 

increase in age at menarche (95% CI 0.4–40 days).  
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Genetic association with related traits and diseases  

Several loci for which the associations with AFB and NEB reach genome-wide significance are 

associated with behavioral and reproductive phenotypes. The lead SNPs in the Chr 2 and Chr 3 loci 

have been associated with educational attainment35 and the locus on Chr 5 with age at menarche36 

while the locus on Chr 6 has recently been associated with age at first sexual intercourse37 

(Supplementary Table 24). Some of the 38 loci for age at first sexual intercourse that were recently 

identified in 125,667 UK Biobank participants were also associated with AFB (in/near RBM6–

SEMA3F and ESR1) and NEB (in/near CADM2 and ESR1). The lead SNPs for RBM6–SEMA3F 

(rs2188151) and ESR1 (rs67229052) are in LD with our lead SNPs for AFB on Chr 3 (r2= 0.44) and 

Chr 6 (r2=0.94), respectively. An in silico pleiotropy analysis showed that our lead SNP in the Chr 3 

locus (rs2777888) is in LD (r2=0.59) with rs6762477 – which has been associated with age at 

menarche2 – while other SNPs in the same locus have been associated with HDL cholesterol38 

(rs2013208; r2=0.81) and BMI39 (rs7613875; r2=0.81) (Supplementary Table 5). We next performed 

an exploratory analysis using the proxy-phenotype method40 to examine if the SNPs strongly 

associated with AFB in women are empirically plausible candidate SNPs for related traits like age at 

menarche and age at menopause (Supplementary Note). After controlling for multiple testing, we 

identified three AFB-associated SNPs near rs2777888 on Chr 3 (rs9589, rs6803222 and rs9858889) 

that are also associated with age at menarche (P<4.10x10-4). None of the AFB or NEB-associated 

SNPs are associated with age at menopause. 

We performed a bivariate LD score regression analysis41 to estimate the pairwise genetic 

correlation with 27 publicly available GWAS results for traits associated with human reproductive 

behavior (Supplementary Note). AFB shows significant and positive genetic correlations with the 

human (reproductive) developmental traits age at menarche, voice breaking, age at menopause, 

birth weight and age at first sexual intercourse, as well as with years of education. Conversely, 

having more AFB-increasing alleles is associated with a lower genetic risk of smoking (ever, 

number of cigarettes, later onset) and with lower insulin resistance-related phenotypes, i.e. BMI, 

waist-hip-ratio adjusted for BMI, fasting insulin, triglyceride levels and risk of diabetes (Figure 3 

and Supplementary Table 25). All genetic correlations remain significant after Bonferroni 

correction for multiple testing (P<2.6x10-3). Years of education (P=6.6x10-14) and age at first 

sexual intercourse (P=1.14x10-15) are the only traits that show significant and negative genetic 

correlations with NEB. We also observed significant genetic correlations of rg=0.86 (SE=0.052) for 

AFB and rg=0.97 (SE=0.095) for NEB between men and women, implying that most genetic 

effects on reproductive behavior resulting from common SNPs are shared across the sexes. 

Discussion 
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This GWAS is the largest genetic epidemiological discovery effort for human reproduction to date, 

with critical implications for population fitness and clear physiological mechanisms linking 

hypothesized genes and observed phenotypes. Related studies previously focussed on reproductive 

life span42,43, age at first sexual intercourse11 and more proximal infertility phenotypes,2–4 largely 

overlooking AFB and NEB. The rapid postponement of AFB and increased infertility and involuntary 

childlessness in many societies7 makes it important to uncover the genetic and biological architecture 

of reproduction. We identify ten novel and confirm two recently identified genetic loci that are 

robustly associated with AFB and NEB, as well as variants and genes within these loci that likely 

drive these associations. Four additional loci were identified in a gene-based GWAS. 

Two loci that show interesting results in follow-up analyses are located on Chrs 1 and 3. The lead 

SNPs of the Chr 1 locus for AFB and NEB are in LD with likely functional non-synonymous SNPs in 

genes encoding: 1) CREB (cAMP responsive element binding) regulated transcription co-activator 2 

(CRTC2), which at a protein level acts as a critical signal mediator in follicle-stimulating hormone 

(FSH) and transforming growth factor β1(TGFβ1)-stimulated steroidogenesis in ovarian granulosa 

cells44; and 2) CREB protein 3-like 4 (CREB3L4),45 which in humans is highly expressed in the 

prostate, ovaries, uterus, placenta and testis, and plays a role in spermatid differentiation46 and male 

germ cell development.47 The lead SNP and/or functional variants in LD with it are also associated 

with the methylation status of these two genes and expression of CRTC2 in whole blood and 

lymphocytes. Three promising functional variants in the Chr 1 locus reside in binding sites of the 

transcriptional co-activator CREB binding protein (CREBBP). In addition to a direct effect of the 

above-mentioned non-synonymous SNPs on protein function, the associations of AFB and NEB with 

variants in the locus on Chr 1 may thus be mediated by alterations in cAMP responsive element 

binding in men and women. The locus on Chr 1 also harbours DENND4B, a paralogue of DENND1A, 

implicated in PCOS.48 While DENND1A is expressed at the protein level in the ovary and testis, 

DENND4B is in the cervix, and its function and role are less well understood. 

The lead SNP of the locus on Chr 3 (rs2777888) is associated with methylation and expression of 

several genes – in cis and trans – that are known to play a role in cell cycle progression and/or sperm 

function. First, rs2777888 is associated with the expression of RNF123 (or KPC1) in cis, which plays 

a role in cellular transition from the quiescence to proliferative state. Secondly, rs2777888 – or 

functional variants in LD with it – may influence the cell cycle by altering the expression of RBM5 

and RBM6 (RNA binding motif proteins 5 and 6). The former plays a role in cell cycle arrest and 

apoptosis induction and regulates haploid male germ cell pre-mRNA splicing and fertility in mice. 

RMB5 mutant mice exhibit spermatid differentiation arrest, germ cell sloughing and apoptosis, 

leading to lack of sperm in ejaculation.49 Thirdly, rs2777888 affects expression of LAMP2 in trans, 

which is located on the X chromosome and encodes a lysosomal membrane protein involved in the 
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acrosome reaction, i.e. the enzymatic drill allowing sperm to penetrate and fertilize ovum.50 LAMP2 is 

expressed at the protein level in male and female reproductive organs with an effect size of rs2777888 

for LAMP2 mRNA expression that is almost twice as large in women than in men (Supplementary 

Figure 4). This suggests an important role for the lysosome in both sperm and ovum. Finally, 

functional variants in the Chr 3 locus are associated with the mRNA expression of HYAL3 in 

monocytes (hyaluronoglucosaminidase 3). The latter degrades hyaluronan, which also plays an 

important role in sperm function and the acrosome reaction.49,51 

Functional follow-up experiments could disentangle the potential interplay between many candidate 

genes in the loci on Chrs 1 and 3 on reproductive behavior and – given our in silico results – 

infertility. This can be extended to candidate genes in the remaining loci identified in the present 

study, some of which are relevant for fertility: mice lacking EFNA5 (Chr 5 NEB locus) are 

subfertile,52 ESR1 on Chr 6 encodes an estrogen receptor, 53,54 and CYHR1 on Chr 8 is involved in 

spermatogenesis55. Such experiments would help understand whether binding of estrogen receptor 1 – 

encoded by ESR1 in the locus on Chr 6 – at the site of functional variants in the locus on Chr 2 drives 

or mediates the association with AFB in the Chr 2 locus, as well as to identify and characterize causal 

genes. Recent developments in high-throughput, multiplex mutagenesis using Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) and associated systems (Cas9) allow such 

experiments to be performed using in vivo model systems.56 

AFB and NEB are not only driven by biological processes, but are also subject to individual choice 

and personal characteristics – such as personality traits – as well as by the historical, cultural, 

economic and social environment (e.g., effective contraception, childcare availability). Demographic 

research has shown a strong positive association between AFB and educational attainment.12 We show 

that the associations between fecundity, reproductive behavior and educational attainment are partly 

driven by genetic factors, and identified loci that are associated with AFB as well as with e.g., age at 

first sexual intercourse 37 and educational attainment.35 

Our findings are anticipated to lead to insights into how postponing reproduction may be more 

detrimental for some – based on their genetic make-up – than others, fuel experiments to determine 

‘how late can you wait’57 and stimulate reproductive awareness. Causal genes in the loci we identified 

may serve as novel drug targets, to prevent or delay age-related declines in fertility and sperm quality, 

or increase Assisted Reproductive Technology efficiency. Our study is the first to examine the 

genetics of reproductive behavior in both men and women, and the first that is adequately powered to 

identify loci both in women and men. We also provide support for Fisher’s theorem that fitness is 

moderately heritable in human populations. While effect sizes of the identified common variants are 

small, there are examples of GWAS-identified loci of a small effect that end up leading to important 

biological insights.58,59 Many of our findings suggest a role for sperm quality, which is one lead for 
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researchers to pursue. Since current sperm tests remain rudimentary, our findings could serve as a 

basis for ‘good quality’ sperm markers. We identified variants that are likely causal – both coding and 

regulatory – as well as a set of genes that likely underlie the associations we identified. Follow-up 

experiments in animal models are required to confirm and characterize the causal genes in these loci. 

URLs 

Analysis plan pre-deposited in the Open Science Framework website: https://osf.io/53tea/ 
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Figure 1. Manhattan plots of SNPs for AFB (age at first birth) and NEB (number of children 

ever born) in single genomic control meta-analysis. SNPs are plotted on the x-axis according to 

their position on each chromosome against association with AFB (panel a) and NEB (panel b). The 

solid blue line indicates the threshold for genome-wide significance (P<5x10-08) and the red line, the 

threshold for suggestive hits (P<5x10-06). Blue points indicate SNPs in a ±100 KB region around 

genome-wide significant hits. Gene labels are annotated as the nearby genes to the significant SNPs.  

 

 

Figure 2. Quantile-quantile plots of SNPs for AFB (panel a) and NEB (panel b) in single 

genomic control, meta-analysis. The grey shaded areas in the Q-Q plots represent the 95% 

confidence bands around the P-values under the null hypothesis. 

 

Figure 3.  Genetic overlap between AFB and NEB and other related traits. Results from Linkage-

Disequilibrium (LD) Score regressions: estimates of genetic correlation with developmental, 

reproductive, behavioral, neuropsychiatric and anthropometric phenotypes for which GWAS 

summary statistics were available in the public domain. The length of the bars indicates the estimates 

of genetic correlation. Grey error bars indicate 95% confidence intervals. The mark “*” indicates that 

the estimate of genetic correlation is statistically significant after controlling for multiple testing 

(P<0.05/27=1.85x10-3). 
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Table 1. GWAS meta-analysis results for independent loci that are genome-wide significantly (P<5.0x10−8) associated with AFB or NEB in either the 
combined or sex-specific meta-analysis.  
 

Note: The rows in bold are the independent signals reaching P<5×10−8 in the meta-analysis. Annotation shows for each of the 12 independent lead SNPs (i.e., 

excluding rs10908474 on Chr 1) whether it is (i) in strong LD (r2>0.8) with a non-synonymous variant (N) or one or more variants prioritized by 

RegulomeDB (R) with evidence of having functional consequences (defined as a score <4); (ii) associated with an eQTL in cis and/or trans (ctQ); (iii) 

associated with an meQTL in cis and/or trans (ctM). “EAF” refers to effect allele frequency of the pooled meta-analysis. “Beta” refers to the effect size in the 

AFB and NEB analyses. All P values are from the fixed effects, sample-size–weighted meta-analysis. 

  

SNP Chr 
Position 

(bp) Nearest Genes  Annotation 

Effect 
Allele / 
Other 
Allele EAF Beta P value 

 
 

N 
(pooled) 

Beta 
(men) 

P value 
(men) 

Beta 
(women) 

P value 
(women) 

  Age at first birth (AFB) 

rs10908557 1 153927052 CRTC2 
N, R, ctQ, 

ctM C/G 0.695  0.091 5.59E-10 249,025  0.185 2.98E-07  0.076 5.38E-06 
rs1160544 2 100832218 LINC01104 R, cQ, cM A/C 0.395 -0.082 2.90E-09 250,330 -0.042 2.12E-01 -0.092 5.00E-09 

rs2777888 3 49898000 CAMKV 
N, R, ctQ, 

ctM   A/G 0.507  0.106 4.58E-15 250,941  0.155 2.40E-06  0.095 6.07E-10 
rs6885307 5 45094503 MRPS30, HCN1 R, ctQ, cM A/C 0.799 -0.107 2.32E-10 248,999 -0.131 2.07E-03 -0.104 3.90E-08 
rs10056247 5 133898136 JADE2 cQ, cM T/C 0.289  0.082 4.37E-08 249,429  0.050 1.68E-01  0.089 1.28E-07 
rs2347867 6 152229850 ESR1 cM A/G 0.649  0.091 1.38E-10 248,039  0.098 4.69E-03  0.097 1.80E-09 
rs10953766 7 114313218 FOXP2 cM A/G 0.429  0.087 1.82E-10 248,039  0.106 1.31E-03  0.089 8.41E-09 
rs2721195 8 145677011 CYHR1 R, cQ, ctM   T/C 0.469 -0.073 6.25E-07 250,493 -0.014 6.85E-01 -0.099 6.13E-09 
rs293566 20 31097877 NOL4L  cQ, cM T/C 0.650  0.081 1.41E-08 245,995  0.110 1.47E-03  0.079 1.31E-06 
rs242997 22 34503059 LARGE1, ISX  A/G 0.613 -0.084 3.38E-09 238,002 -0.139 8.51E-05 -0.076 1.82E-06 
  Number of children ever born (NEB) 
rs10908474 1 153753725 SLC27A3, GATAD2B  A/C 0.384  0.020 2.08E-08 342,340  0.021 8.10E-04  0.020 7.89E-06 
rs13161115 5 107050002 EFNA5, FBXL17 cM C/G 0.234 -0.041 1.34E-02 341,737 -0.041 1.37E-08  0.005 3.29E-01 
rs2415984 14 46873776 LINC00871 cM A/G 0.470 -0.020 2.34E-08 315,167 -0.029 2.41E-06 -0.016 3.71E-04 
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Table 2. Function and potential relevance for genes in GWAS-identified loci that are most likely causal based on all available evidence. 
Lead SNP Gene Chr Evidence Gene function and potential role in reproduction and (in)fertility Reference 
rs10908557  CRTC2 1 G, V, ctQ, ctM, Q 

lymph. (R) 
Functions as a Ca2+ and cAMP-sensitive coincidence sensor; Promotes CREB target genes 
expression; Is a signal mediator in FSH and TGFβ1-steroidogenesis in ovarian granulosa cells. 
 

60 
 

rs10908557  CREB3L4 1 N, V, cQ, cM Plays a role in protein maturation; Involved in spermatid differentiation and male germ cell 
development; Expressed in prostate, oocytes, fallopian tubes, mammary glands. 46,47 

 
rs10908557  GATAD2B 1 V, Q monoc. (R) Transcriptional repressor and a component of nucleosome remodelling complex Mi2/NuRD. 

Increased expression in endometriosis; a common gynaecological disorder that causes pelvic 
pain and infertility. 

61, 62 

 
 
 

rs10908557  
 

SLC39A1 1 V, cQ, cM Zinc uptake transporter; Major zinc regulator in prostate cells; Involved in the regulation of zinc 
homeostasis by cumulus cells in the oocyte. 63, 64 

rs10908557  
 

DENND4B 1 cM A paralogue of DENN1A, which has been implicated in polycystic ovary syndrome; Expressed at 
the protein level in the cervix. 65, 66 

rs1160544  AFF3 2 cQ, cM A lymphoid nuclear transcriptional activator gene and implicated in tumor genesis; Same family 
as AFF3, AFF4 (FMR2 family member 4); Transcriptional regulator in testicular somatic cells; 
Essential for male germ cell differentiation and survival in mice. 

67, 68 

rs1160544  LINC01104 2 G, V Unknown.  

rs2777888  HYAL3 3 cM, Q monoc. (R) Hyaluronidases including HYAL3 are involved in degradation of hyaluronan, a major 
glycosaminoglycan of the extracellular matrix; Acquired during sperm maturation in the 
epididymis and involved in sperm function and the acrosome reaction; Required for in vitro 
cumulus penetration in mice, although, its absence is not associated with infertility (perhaps 
compensated for by other Hyaluronidases). 

69 

rs2777888  RBM6 3 V, cQ, cM, DEPICT, Q 
monoc. (R) 

Involved in RNA splicing. 
 70 

rs2777888  RNF123 3 V, cQ, cM, Q liver (R) Plays a role in cellular transitioning from the quiescence to proliferative state by its E3- ubiquitin 
ligase activity towards cyclin-dependent kinase inhibitor 1B, which controls the cell cycle 70–72 
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progression at G1 phase.  
rs2777888  RBM5 3 V, cQ Involved in cell cycle regulation; Is a regulator of precursor messenger RNA splicing; Involved 

in spermatogenesis and fertility in mice. 73 
rs2777888  MON1A 3 V, cM, DEPICT Involved in the movement and trafficking of proteins (e.g. ferroportin) through the secretory 

apparatus. 74 
rs2777888  U73166.2 3 DEPICT Unknown.  
rs2777888  MST1R 3 N, V, cM, MetaRanker, 

ToppGene and Endeavour 
A cell-surface receptor for MSP with tyrosine kinase activity, expressed on the ciliated epithelia 
of the mucociliary transport apparatus of the lung: Involved in host defence, expressed in sperm. 
May act as a regulatory system of ciliary motility – together with MSP – which sweeps eggs 
along the oviduct; Expressed in mucous membrane, mammary glands. 
 

75 

rs10056247  JADE2 5 G, V, cM, Involved in histone acetylation. 
 

 

rs13161115 EFNA5 5 cM Involved in development and differentiation of the nervous system and folliculogenesis 
regulation; Required for normal fertility in female mice; Expressed in embryonic stem cells, 
embryoid bodies. 

76 

rs6885307 HCN1 5 G, cM Hyperpolarization-activated cation channel that contributes to the native pacemaker current in 
e.g. neurons; HCN1 channels are present in Kisspeptin (Kiss1) neurons in the rostral 
periventricular area of the third ventricle (RP3V), which provide an excitatory drive to 
gonadotropin-releasing hormone (GnRH) expressing neurons that control fertility. 

77 

rs2347867 ESR1 6 G, cM, binds at 
rs4851269 on Chr2 (R) 

Transcription factor involved in estrogen-responsive gene expression. Essential for sexual 
development and reproductive function in women; Genetic variants in ESR1 may influence 
susceptibility to endometriosis or female fertility in endometriosis patients; Involved in male 
fertility by transferring estrogen effect; Expressed in myometrium, endometrium, oocytes, uterus, 
fallopian tubes. 

53,78–81 

rs10953766 FOXP2 7 G, cM, binds at rs6997 
on Chr 3 (R) 

Transcription factor expressed in fetal and adult brain that is involved in speech and language 
development; Involved in regulation of neuronal development in the embryonic forebrain. 
Expressed in mucous membrane, myometrium. 

82 

rs2721195  CYHR1 8 cQ, cM A histidine-cysteine rich protein involved in spermatogenesis. 
55 

rs2721195  GPT 8 V, cQ, cM, Q monoc. (R) Involved in intermediary metabolism of glucose and amino acids; May play a role in 
spermatogenesis via testicular glucose metabolism, which is pivotal for the normal occurrence of 
spermatogenesis; Levels in the normal range are positively associated with metabolic and 
endocrine abnormalities in women of reproductive age and negatively with FSH levels, 
independently of obesity. 

83,84 

rs2721195  RECQL4 8 V, cQ, cM Processing of aberrant DNA structures that arise during DNA replication and repair.; 
Predominantly expressed in testis. 85 
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rs2721195  PPP1R16A 8 V, cQ, cM, Q monoc. (R) Regulator of protein phosphatase PP1β;Present in the sperm tail where it interacts with proteins 
that are important in sperm structure and motility;Expressed in mammary glands, fallopian tubes. 86 

rs293566  NOL4L 20 cQ, cM A component of cytoplasm and nucleoplasm;Expressed in Umbilical Veins.  
Evidence categories include: nearest gene (G), non-synonymous variant (N), gene-based GWAS performed in VEGAS (V), eQTL in cis and/or trans (ctQ), meQTL in cis and/or trans 
(ctM), eQTL (Q) in lymphoblasts (lymph), monocytes (monoc) or liver based on RegulomeDB (R), gene prioritization using either DEPICT or MetaRanker, ToppGene and Endeavour, 
protein binding at SNP based on RegulomeDB (R). 
Chr= Human chromosome on which the gene is located. 
FSH= Follicle-stimulating hormone; CREB=cAMP response element-binding protein; TGFβ1= Transforming growth factor β1; MSP = Macrophage stimulating protein 
SNIPPER was used for the literature search, using the search terms “fertility”, “sperm”, “ovum” and “reproduction”.  
Gene Network was used for finding the tissue/organ with high expression of a given gene (AUC >0.8). 



	

 21 

ONLINE METHODS 

GWAS of reproductive behavior study design in brief 

Genome-wide association analyses of age at first birth (AFB) and number of children ever 
born (NEB) were performed at the cohort level according to a pre-specified analysis plan (see 
Supplementary Note). Cohorts uploaded results imputed using the HapMap 2 CEU (r22.b36) 
or 1000G reference sample. Cohorts were asked to only include participants of European 
ancestry, with no missing values on all relevant covariates (sex, birth year, and cohort 
specific covariates), who were successfully genotyped genome-wide, and passed cohort-
specific quality controls. We followed the QC protocol of the GIANT consortium’s recent 
study of human height87 and employed QCGWAS88 and EasyQC89 software, which allowed 
us to harmonize the files and identify possible sources of errors in association results.  

Cohort association results (after applying the QC filters) were combined using sample-size 
weighted meta-analysis with genomic control (GC) correction within each study, 
implemented in METAL.90 SNPs were considered genome-wide significant at P-values 
smaller than 5×10-08 (α of 5%, Bonferroni-corrected for a million tests). The meta-analyses 
were carried out by two independent analysts. Detailed results of each genome-wide 
significant locus are shown in in Supplementary Figures 4-29. 

The total sample size of the meta-analysis is N=251,151 for AFB pooled and N=343,072 for 
NEB pooled. The PLINK clumping function91 was used to identify the most significant SNPs 
in associated regions (termed “lead SNPs”). Detailed cohort descriptions, information about 
cohort-level genotyping and imputation procedures, cohort-level measures, and quality 
control filters are shown in Supplementary Tables 26, 27 and discussed in the Supplementary 
Note. 

Dominant genetic variation in fertility 
We applied a method recently developed by Zhu and colleagues92 to estimate dominant 
genetic effects based on the genetic relatedness of unrelated individuals. Our results based on 
the combined samples of TwinsUK and Lifelines show no evidence for dominant genetic 
effects for either NEB (1.0x10-07, SE=0.07, P=0.45) nor AFB (0.02, SE=0.08, P=0.43. 
Results are shown in Supplementary Table 28 and discussed in the Supplementary Note.  

Bivariate and conditional analysis 
As joint analysis of correlated traits may boost power for mapping functional loci, we applied 
a recently developed multi-trait analysis method93 to test the association between each variant 
and the two correlated traits AFB and NEB simultaneously using multivariate analysis of 
variance (MANOVA) (see Supplementary Note and Supplementary Table 29). The analysis 
was performed based on the genome-wide meta-analysis summary statistics of each single 
trait. Although it did not reveal additional genome-wide significant loci (!=0.995), it 
accounted for the correlation between the two phenotypes, thus improving the strength of two 
signals on chromosomes 1 and 5, indicating possible pleiotropic architecture between AFB 
and NEB (Supplementary Figure 30). The analysis also provided a conditional association 
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test of the genetic effect of each variant on AFB including NEB as a covariate, and on NEB 
including AFB as a covariate (Supplementary Figure 31) 

 

Population stratification 
We used two methods to assess whether our GWAS results exhibited signs of population 
stratification (see Supplementary Note). First, we used the LD Score intercept method 
described in Bulik-Sullivan et al.94 to test whether inflation in chi-square statistics was due to 
confounding biases such as cryptic relatedness and population stratification. In all six cases, 
the intercept estimates were not significantly different from 1, suggesting no appreciable 
inflation of the test statistics attributable to population stratification. Second, we conducted a 
series of individual and within-family (WF) regressions using polygenic scores (PGS) as 
predictors95–97 on a dataset of DZ twins (STR and TwinsUK). The regression analyses 
showed that WF regression coefficients for both AFB and NEB were statistically different 
from zero when the P-value threshold was sufficiently high (Supplementary Tables 30, 31 
and Supplementary Figures 32, 33). 

Sex-specific effects 
In addition to the pooled GWAS results presented in the main text, we also ran sex-specific 
GWAS meta-analyses for AFB and NEB (see Supplementary Note). The sample size for sex-
specific analysis was: AFB women, N=189,656; AFB men, N=48,408; NEB women 
N=225,230; NEB men N=103,909. Our results indicated 6 genome-wide significant (P<5x10-

08) independent SNPs for AFB women and 1 genome-wide significant independent SNP for 
NEB men (Supplementary Table 32 and Supplementary Figures 34, 35). We also used LD 
score bivariate regression and GREML bivariate analysis to estimate the genetic correlation 
among men and women based on the sex-specific summary statistics of AFB and NEB meta-
analysis results. Our estimates based on LD bivariate regression indicated a genetic 
correlation of rg=0.86 (SE=0.052) among the sexes for AFB and rg=0.97 (SE=0.095) for 
NEB. Results are shown in Supplementary Tables 33, 34 and discussed in the Supplementary 
Note. 

Polygenic score prediction 

We performed out-of-sample prediction and calculated polygenic scores for AFB and NEB, 
based on GWA meta-analysis results and used regression models to predict the same 
phenotypes in four independent cohorts: HRS, Lifelines, STR and TwinsUK (see 
Supplementary Note and Supplementary Figure 2). We ran ordinary least-squares (OLS) 
regression models and reported the R2 as a measure of goodness-of-fit of the model. In 
addition, we tested how well our polygenic scores for NEB could predict childlessness at the 
end of the reproductive period (using age 45 for women and 55 for men), Supplementary 
Table 21. Since age at first birth is observed only in parous women, we adopted an additional 
statistical model to account for censoring (Cox Proportional hazard model, Supplementary 
Table 22) and selection (Heckman selection model, Supplementary Table 35). We 
additionally tested the predictive value of our polygenic scores for AFB for age at menarche 
(using TwinsUK) and age at menopause (using Lifelines), Supplementary Table 23. Finally, 
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we examined whether menopause variants are associated with AFB. We calculated a PGS of 
age at menopause based on the recent GWAS results from Day et al. (2015)98 and applied 
them to LifeLines and TwinsUK (Supplementary Table 36). 

Genetic correlations 

We used information from 27 publicly-available GWAS results to estimate the amount of 
genetic correlations between AFB and NEB and related traits (Supplementary Table 25 and 
Figure 3 in the main text) using LD score bivariate regression (see Supplementary Note). 
Details on these phenotypes are provided in the Supplementary Note. A conservative 
Bonferroni-corrected P-value threshold of P<1.85×10−03 (=0.05/27) was used to define 
significant associations. We also tested the correlation between NEB and AFB using a 
bivariate GREML analysis on the Women’s General Health Study (WGHS, N=40,621). 

Lookups and proxy phenotype 

Following the results on genetic overlap with other phenotypes we tested – in a quasi-
phenotype replication setting – whether the SNPs strongly associated with AFB in women 
were empirically plausible candidate SNPs for age at menarche and age at menopause (see 
Supplementary Note). We used a two-stage approach applied in other contexts.99,100 In the 
first stage, we conducted a meta-analysis of AFB excluding the cohorts that were part of the 
meta-analysis of the phenotype we intended to replicate. We merged the SNPs from this 
meta-analysis with the publically available association results of the most recent GWAS on 
age at menarche2 and age at menopause101 from the Reprogen consortium website.1 SNPs that 
were not present in both files were dropped from the analysis. We aligned the alleles and the 
direction of effects using the EasyStrata software.102 We then selected the independent SNPs 
with a P-value<1x10-05, using the clump procedure in PLINK91, (1000Kb window and LD 
threshold of R2>0.1) to identify the most significant SNPs in associated regions included in 
both files. We defined “prioritized SNP associations” as those that passed the Bonferroni 
correction for the number of SNPs tested (0.05/122=4.10x10-04, both in age at menarche and 
age at menopause). Our results identified three SNPs after Bonferroni-correction that can be 
used as good candidates for age at menarche. We did not isolate any clear “candidate SNP” 
for age at menopause (Supplementary Figure 36). 

Gene-based GWAS analysis 

We performed gene-based testing with the full GWAS set (~2.5M HapMap-imputed SNPs) 
of both phenotypes using VEGAS (see Supplementary Note and Supplementary Tables 
3,4).23,103 This software has the advantage of accounting for LD structure and the possibility 
to define a range beyond the gene bounds to include intergenic regions in the analysis. We 
defined a 50kb extra window surrounding the genes and considered every SNP for the gene-
based analysis, ran the analyses per chromosome with up to 1006 permutations and considered 
P<2.5x10-06 as the threshold for significance (0.05/~20.000 genes).  

																																																													
1		Data downloaded in November 2015		
	



	

 24 

eQTL and meQTL analysis 

For each of the 12 SNPs identified in the GWAS, local (cis, exons/methylation sites < 1 MB 
from the SNP) and genome-wide (trans, exons/methylation sites > 5 MB from the SNP) 
effects were identified by computing Spearman rank correlations between SNPs and local or 
global exons/methylation sites (see Supplementary Note). Bonferroni multiple testing 
correction was performed for the 12 SNPs tested (P<2.5x10-06 for cis meQTL analysis, 
P<1x10-08 for trans meQTL analysis, P<1.2 x10-06 for cis eQTL analysis, P<1.3x10-08 for 
trans eQTL analysis). For each of the significant associations, the exons/methylation sites 
were selected, the strongest eQTLs were identified for these exons/methylation sites, and LD 
between the strongest eQTLs and the corresponding SNP identified in the GWAS were 
computed. LD was computed using BIOS genotypes (the genotypes used for eQTL and 
meQTL mapping).  

Functional variant analysis using RegulomeDB 

We used RegulomeDB27 to identify variants amongst the 322 SNPs that reached P<5x10-08 
for association with AFB and/or NEB in the meta-analysis of GWAS that likely influenced 
regulation of gene expression (see Supplementary Note). RegulomeDB integrates results 
from RoadMap Epigenomics26 and the ENCODE project.104 SNPs showing the most 
evidence of being functional – defined as a RegulomeDB score <4 – were subsequently 
examined in more detail in terms of effects on gene expression (eQTLs) and their protein-
binding capacity (Supplementary Table 6). 

Gene prioritization 

Potentially causal genes for the associations identified by GWAS were identified using four 
previously described bioinformatics tools: ToppGene4, Endeavour5, MetaRanker6, and 
DEPICT7. To this end, we first retrieved positional coordinates for all lead SNPs according to 
GRCh37/hg19 using Ensembl’s BioMart. These coordinates were used to extract all genes 
located within ±40kb of lead SNPs using the UCSC table browser. The identified genes then 
served as input for ToppGene and Endeavour. Genes with established roles in fertility served 
as training genes in this procedure, i.e. BRCA1, EGFR, ERBB2-4, HSD17B1, RBM5, ESR1, 
ESR2 and FSHB. For MetaRanker we provided SNPs that reached P<5x10-04 and their 
chromosomal position as input, together with the previously mentioned set of training genes. 
Since ToppGene, Endeavour and MetaRanker are biased towards larger and well-described 
genes, we also performed a gene prioritization procedure using DEPICT.7 All SNPs that 
reached P<5x10-04 in the meta-analysis served as input, and information on prioritized genes, 
gene set enrichment, and tissue/cell type enrichment were extracted. Genes were 
subsequently prioritized that: 1) reached P<0.05 in DEPICT; or 2) reached P<0.05 in 
ToppGene, Endeavour and MetaRanker (Supplementary Table 37). 

Functional network and enrichment analysis 

DEPICT was used to identify gene set, cell type and tissue enrichment analyses, using the 
GWAS-identified SNPs with P<5x10-04 as input (see Supplementary Note). Due to the 
relatively small number of identified loci, DEPICT was only able to perform these analyses 
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for AFB and NEB pooled, and AFB women. To construct a functional association network, 
we combined five prioritized candidate gene sets into a single query gene set which was then 
used as input for the functional network analysis.24 We applied the GeneMANIA algorithm 
together with its large set of accompanying functional association data.105 We used the 
Cytoscape software platform,106 extended by the GeneMANIA plugin (Data Version: 
8/12/2014, accessed April 24, 2016).107 All the genes in the composite network, either from 
the query or the resulting gene sets, were then used for functional enrichment analysis against 
Gene Ontology terms (GO terms)108 to identify the most relevant GO terms using the same 
plugin.107  

Gene-environment interactions 

Previous research based on twin studies shows differential heritability of fertility behavior 
across birth cohorts.109,110 We used the Swedish Twin Register (STR) to examine whether the 
effect of a polygenic score (PGS) of AFB and NEB varies across birth cohort. We followed 
the analysis presented in the recent GWAS of education111 and divide the sample into six 
groups based on their year of birth. Each group spans five birth years, with the oldest ranging 
from 1929-1933 and the youngest born between 1954-1958. Supplementary Table 38 reports 
the estimated coefficient from these regressions. The results indicate a U-shaped trend in 
AFB and a linear decline in NEB, but do not provide any clear evidence of interaction effects 
between the PGS’s and birth cohort. We additionally tested the interaction effects between 
educational level and the PGS of AFB and NEB in three different samples (LifeLines, STR 
and HRS). Supplementary Table 39 reports the estimated coefficient from these regressions. 
The results indicate that years of education are positively associated with AFB in both 
LifeLines and STR, and negatively associated with NEB in the HRS. With the exception of 
NEB in the HRS, we found no evidence of GxE effects with education. 

Robustness checks 

To estimate the robustness of our results for AFB, we conducted two additional analyses. 
First, we estimated how the coefficients change if we control for Educational Attainment 
(EA). Using data from deCODE, we ran an additional association analysis using the 10 loci 
that were genome-wide significant in the meta-analysis (P<5x10-08). The analysis has been 
restricted to individuals born between 1910 and 1975, who also had data available on 
completed education. The total sample size is 42,187 (17,996 males and 24,191 females). The 
analysis is adjusted for sex, year of birth (linear, squared and cubic), interaction between sex 
and year of birth and the first 10 PCAs. Education is measured by years of education, ranging 
between 10 and 20 years. Supplementary Table 40 reports the association results before and 
after adjusting for educational attainment. Our analysis shows that the effect sizes shrink after 
including educational attainment as a covariate, with an average reduction of around 15%. 
We also estimated the effect of a polygenic risk score of AFB calculated from meta-analysis 
data excluding the deCODE cohort. The polygenic score remains highly significant. The 
effect of 1SD of the AFB score decreases from 0.19 years (69 days) without controlling for 
education to 0.16 years (59 days) when we control for years of education. Second, we 
estimated how the coefficients change after controlling for Education Attainment (EA) and 
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Age at First Sex using the UKBiobank (N=50,954). We ran two association models: the first 
follows the GWAS analysis plan with no additional covariates and the second added years of 
education and age at first sexual intercourse as covariates. The results are presented in 
Supplementary Table 41 and Supplementary Figure 37. Our analysis shows that the effect 
sizes of our top hits are highly concordant (R2=0.94). The inclusion of EA and AFS as 
covariates weakens the effect sizes on average by 40% and increases the P-value of the 
estimated coefficients. Overall, we interpret this additional analysis as a robustness test that 
confirm that the top hits from our meta-analysis are robust to the inclusion of the 
confounding factors of EA and AFS. 

Positive selection 

We performed a Haploplotter analysis112 to examine if lead SNPs and/or functional variants 
identified using RegulomeDB show evidence of positive selection. Three variants showed 
standardized integrated haplotype scores <-2 or >2, indicating that these variants represent 
the top 5% of signals in the population. These SNPs are: 1) rs7628058 on chromosome 3 for 
AFB, an eQTLs for RBM6 in monocytes; 2) rs2247510 on chromosome 3 for AFB, an eQTL 
for RBM6 and HYAL3 in monocytes and binding site for a range of transcription factors; 3) 
rs2415984, the lead SNP in the chromosome 14 locus for NEB. Results are presented in 
Supplementary Table 42. 
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