52 research outputs found

    Modeling of the denture’s elastic base

    Get PDF
    This article discusses problems during modeling of the denture’s elastic base. The basic simplifications adopted in the analysis allows the use of formulae taken from the theory of elasticity

    Bacteriopheophytin triplet state in <i>Rhodobacter sphaeroides</i> reaction centers

    Get PDF
    It is well established that photoexcitation of Rhodobacter sphaeroides reaction centers (RC) with reduced quinone acceptors results in the formation of a triplet state localized on the primary electron donor P with a significant yield. The energy of this long-lived and therefore potentially damaging excited state is then efficiently quenched by energy transfer to the RC spheroidenone carotenoid, with its subsequent decay to the ground state by intersystem crossing. In this contribution, we present a detailed transient absorption study of triplet states in a set of mutated RCs characterized by different efficiencies of triplet formation that correlate with lifetimes of the initial charge-separated state P(+)H(A)(−). On a microsecond time scale, two types of triplet state were detected: in addition to the well-known spheroidenone triplet state with a lifetime of ~4 μs, in some RCs we discovered a bacteriopheophytin triplet state with a lifetime of ~40 μs. As expected, the yield of the carotenoid triplet increased approximately linearly with the lifetime of P(+)H(A)(−), reaching the value of 42 % for one of the mutants. However, surprisingly, the yield of the bacteriopheophytin triplet was the highest in RCs with the shortest P(+)H(A)(−) lifetime and the smallest yield of carotenoid triplet. For these the estimated yield of bacteriopheophytin triplet was comparable with the yield of the carotenoid triplet, reaching a value of ~7 %. Possible mechanisms of formation of the bacteriopheophytin triplet state are discussed

    Just Bone Tired: Equine Bone Stress

    Get PDF
    The field of biophotoelectrochemistry and its application in biophotovoltaics and biosensors has gained more and more attention in recent years. Knowledge of the redox potentials of the catalytically active protein cofactors in biophotovoltaic devices is crucial for accurate modelling and in discerning the mechanisms of their operation. Here, for the first time, we used spectroelectrochemical methods to investigate thermodynamic parameters of a biophotoelectrode in situ. We determined redox potentials of two elements of the system: the primary electron donor in photosynthetic reaction centers (RCs) of the bacterium Rhodobacter sphaeroides and osmium-complex based redox mediators that are bound to a hydrogel matrix. We observe that the midpoint potential of the primary donor is shifted towards more positive potentials in comparison to literature data for RCs solubilized in buffered water solution, likely due to interaction with the polymer matrix. We also demonstrate that the osmium-complex modified redox polymer efficiently wires the RCs to the electrode, maintaining a high Internal Quantum Efficiency with approximately one electron per two photons generated (IQE=50±12%). Overall, this biophotoelectrode may be attractive for controlling the redox state of the protein when performing other types of experiments, e.g. time resolved absorption or fluorescence measurements, in order to gain insights into kinetic limitations and thereby help in the rational design of bioelectronic devices

    Modelling and static analysis of the alar cast partial with regard to the base elasticity

    Get PDF
    The paper presents an analysis of a unilateral cast partial denture supported by the gum soft tissue with the use of the Finite Element Method (FEM) [1, 2]. In the previous considerations in the papers [3, 4], the analysis of the denture is carried out for the case, in which a movable wing is not supported, while in real conditions, the denture is placed on the elastic base of the palate soft tissues. However, the model of the elastic support, proposed in the paper [5, 6], was used only for the analysis of the bilateral cast partial denture. In the following paper, this model was used for the static analysis of the unilateral alar cast partial [7]

    Weak temperature dependence of P (+) H A (-) recombination in mutant Rhodobacter sphaeroides reaction centers

    Get PDF
    International audienceIn contrast with findings on the wild-type Rhodobacter sphaeroides reaction center, biexponential P (+) H A (-) → PH A charge recombination is shown to be weakly dependent on temperature between 78 and 298 K in three variants with single amino acids exchanged in the vicinity of primary electron acceptors. These mutated reaction centers have diverse overall kinetics of charge recombination, spanning an average lifetime from ~2 to ~20 ns. Despite these differences a protein relaxation model applied previously to wild-type reaction centers was successfully used to relate the observed kinetics to the temporal evolution of the free energy level of the state P (+) H A (-) relative to P (+) B A (-) . We conclude that the observed variety in the kinetics of charge recombination, together with their weak temperature dependence, is caused by a combination of factors that are each affected to a different extent by the point mutations in a particular mutant complex. These are as follows: (1) the initial free energy gap between the states P (+) B A (-) and P (+) H A (-) , (2) the intrinsic rate of P (+) B A (-) → PB A charge recombination, and (3) the rate of protein relaxation in response to the appearance of the charge separated states. In the case of a mutant which displays rapid P (+) H A (-) recombination (ELL), most of this recombination occurs in an unrelaxed protein in which P (+) B A (-) and P (+) H A (-) are almost isoenergetic. In contrast, in a mutant in which P (+) H A (-) recombination is relatively slow (GML), most of the recombination occurs in a relaxed protein in which P (+) H A (-) is much lower in energy than P (+) H A (-) . The weak temperature dependence in the ELL reaction center and a YLH mutant was modeled in two ways: (1) by assuming that the initial P (+) B A (-) and P (+) H A (-) states in an unrelaxed protein are isoenergetic, whereas the final free energy gap between these states following the protein relaxation is large (~250 meV or more), independent of temperature and (2) by assuming that the initial and final free energy gaps between P (+) B A (-) and P (+) H A (-) are moderate and temperature dependent. In the case of the GML mutant, it was concluded that the free energy gap between P (+) B A (-) and P (+) H A (-) is large at all times

    Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning

    Get PDF
    At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.Peer reviewe

    National identity predicts public health support during a global pandemic (vol 13, 517, 2022) : National identity predicts public health support during a global pandemic (Nature Communications, (2022), 13, 1, (517), 10.1038/s41467-021-27668-9)

    Get PDF
    Publisher Copyright: © The Author(s) 2022.In this article the author name ‘Agustin Ibanez’ was incorrectly written as ‘Augustin Ibanez’. The original article has been corrected.Peer reviewe
    corecore