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Abstract It is well established that photoexcitation of

Rhodobacter sphaeroides reaction centers (RC) with

reduced quinone acceptors results in the formation of a

triplet state localized on the primary electron donor P with

a significant yield. The energy of this long-lived and

therefore potentially damaging excited state is then effi-

ciently quenched by energy transfer to the RC spheroide-

none carotenoid, with its subsequent decay to the ground

state by intersystem crossing. In this contribution, we

present a detailed transient absorption study of triplet states

in a set of mutated RCs characterized by different effi-

ciencies of triplet formation that correlate with lifetimes of

the initial charge-separated state P?HA
-. On a microsecond

time scale, two types of triplet state were detected: in

addition to the well-known spheroidenone triplet state with

a lifetime of *4 ls, in some RCs we discovered a bacte-

riopheophytin triplet state with a lifetime of *40 ls. As

expected, the yield of the carotenoid triplet increased

approximately linearly with the lifetime of P?HA
-, reaching

the value of 42 % for one of the mutants. However, sur-

prisingly, the yield of the bacteriopheophytin triplet was

the highest in RCs with the shortest P?HA
- lifetime and the

smallest yield of carotenoid triplet. For these the estimated

yield of bacteriopheophytin triplet was comparable with

the yield of the carotenoid triplet, reaching a value of

*7 %. Possible mechanisms of formation of the bacte-

riopheophytin triplet state are discussed.

Keywords Carotenoid � Triplet � Bacteriopheophytin �
Rhodobacter sphaeroides � Spheroidenone

Introduction

The primary photochemical reactions in photosynthesis

take place in reaction center (RC) pigment-protein com-

plexes. In the purple photosynthetic bacterium Rhodobac-

ter (Rba.) sphaeroides, the RC comprises three polypeptide

chains that provide a scaffold for four bacteriochlorophylls

[BChls—two form a dimeric primary electron donor

(P) and two are termed accessory BChls (BA and BB)], two

bacteriopheophytins (BPhes—HA and HB), two ubiqui-

nones (QA and QB), a carotenoid (Car), and an iron ion

(Allen et al. 1987; Yeates et al. 1988) (see Fig. 1). The

carotenoid can be either spheroidene or spheroidenone

depending on growth conditions, with mainly spheroide-

none incorporated into the structure in the presence of

oxygen (Schenck et al. 1984). The RC cofactors are

arranged in two structurally pseudosymmetrical branches

(A and B) differing in function. Branch A facilitates pho-

tochemical charge separation, while branch B plays a role

in photoprotection by quenching the energy of any poten-

tially harmful triplet states that may be formed during

charge separation (Allen et al. 1987).

Electron transfer in the RC is initiated by formation of

the first excited singlet state of the primary electron donor

BChl dimer (P*), either by direct absorption of a photon or

by energy transfer from any chromophore in the associated

light harvesting pigment proteins (Stanley et al. 1996;

Jordanides et al. 2001). Formation of P* triggers a charge

separation in which the electron is transferred from P to HA

via BA to form the state P?HA
-. The route through which

P?HA
- decays depends on whether the RC is ‘‘open,’’ with
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an oxidized QA ubiquinone acceptor, or ‘‘closed’’ with a

reduced or absent QA. In the laboratory, the RC can be

closed by prereducing the QA ubiquinone, or removing it

completely through chemical treatment or a gene mutation

that changes the protein structure. In the open RC, the

electron can be transferred onto QA and then QB. In a

closed RC, the state P?HA
- recombines either to the ground

state (P) or to the triplet excited state (3P) via an inter-

mediate triplet radical pair state 3(P?HA
-) (Michel-Beyerle

et al. 1979; Woodbury and Allen 1995). The 3P state is

sufficiently energetic and long-lived (tens of microseconds

lifetime) to sensitize singlet oxygen, producing photo-

damage, and is therefore an undesired product of charge

separation. Any imbalance in the rates with which electrons

leave the RC via the quinones and enter the RC via P? has

the potential to cause photodamage through the production

of BChl triplet states and singlet oxygen (Cogdell et al.

2000).

The Rba. sphaeroides RC contains a Car molecule

located next to the BB (BChl), the principal function of

which is to quench 3P (Frank and Cogdell 1996; Cogdell

et al. 2000). The reported lifetime of the state 3P in the

absence of carotenoid is 10–100 ls (Cogdell et al. 1975;

Shuvalov and Parson 1981; Cogdell and Frank 1987;

Frank and Violette 1989; Farhoosh et al. 1997; Arellano

et al. 2004). The triplet energy is transferred from 3P to

Car via a thermally activated pathway through the inter-

vening BB, this being necessary because the triplet energy

can be transferred only by the Dexter mechanism and Car

is too distant from P for direct electron exchange (Frank

and Violette 1989; Angerhofer et al. 1998; deWinter and

Boxer 1999). The triplet state of the carotenoid (3Car)

then decays via thermal deactivation without causing

photodamage. The lifetime of 3Car in the Rba. sphaer-

oides RC is 2–10 ls for both spheroidene and

spheroidenone (Monger et al. 1976; Schenck et al. 1984;

Frank and Violette 1989; Frank et al. 1996; Farhoosh

et al. 1997; Angerhofer et al. 1998; Arellano et al. 2004).

In general, the precise triplet lifetime depends on the

number of conjugated p bonds in the Car—the larger the

number the shorter the lifetime (Kakitani et al. 2007).

This number is 10 and 11 for spheroidene and

spheroidenone, respectively.

Although, in nature, the toxic effect of triplet states is

generally minimized through photoprotective mechanisms

which prevent photodamage, the long-lived character of 3P

has attractions for biotechnological applications in which

the RC is used as a photosensitizer. As an example,

Lukashev and coworkers (Lukashev et al. 2007) speculated

that in a system with Rba. sphaeroides RCs immobilized

on a TiO2 substrate, photosensitization occurs by injection

of electrons from the RC 3P triplet state to TiO2. For such a

technology, it could be desirable to increase the yield of 3P

by manipulation of the structure and cofactor composition

of the RC. For this reason, systematic characterization of

triplet state pathways and target molecules in a range of

engineered RCs with a variety of yields of triplet formation

may help in finding a RC that is optimal for photovoltaic

applications.

So far, the yield and mechanism of quenching of triplet

states have been investigated in a variety of RCs with

mutations near the A- and/or B-branch cofactors (Laible

et al. 1998; deWinter and Boxer 1999; Marchanka et al.

2007; Gibasiewicz et al. 2011). A previous study by

Gibasiewicz and coworkers (Gibasiewicz et al. 2011)

explored the influence of point mutations around the

cofactors of the A-branch on the yield of triplet formation,

but did not address the localization of the triplet states or

their lifetimes. The yield of triplet formation was found to

decrease as the lifetime of the P?HA
- state became shorter.

In this study, apart from the triplet state of Car, another

triplet state assigned to BPhe was detected and character-

ized by microsecond transient absorption spectroscopy in a

range of mutated membrane-embedded and wild-type

(WT) detergent-purified Rba. sphaeroides RCs. In all

cases, a spheroidenone triplet state was formed and

decayed with similar lifetimes of *4 ls. The yield of 3Car

was strongly modulated ranging from 4 to 47 % in dif-

ferent samples. An additional long-lived triplet state

assigned to BPhe (3BPhe) had a lifetime of *40 ls and

yield of up to 5 %. Importantly, the efficiency of formation

of the 3BPhe state was inversely correlated with the effi-

ciency of formation of the 3Car state.

Fig. 1 Routes of charge separation and triplet energy transfer in the

Rhodobacter sphaeroides RC. The gray arrow shows the route of

charge separation from P* to P?HA
- via P?BA

-. The orange and blue

arrows show the route of triplet energy transfer from 3P to the

carotenoid and HB, respectively. The dashed arrow shows the

possible route of triplet energy transfer from 3Car to 3BPhe. RC

cofactors are shown with carbon atoms colored pink (P BChls), green

(BA/BB BChls), yellow (HA/HB BPhes), magenta (carotenoid), and

cyan (QA/QB ubiquinones). Iron and magnesium atoms are shown as

brown and magenta spheres, respectively
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Materials and methods

RC-enriched membranes from antenna-deficient strains of

Rba. sphaeroides and purified RCs were prepared as

described previously (Gibasiewicz et al. 2011). The set of

point mutations employed in this study were also described

in detail recently (Gibasiewicz et al. 2011). In brief, the

following mutants were studied: AMW (Ala M260 replaced

by Trp), YMF (Tyr M210 by Phe), YMW (Tyr M210 by Trp),

GML (Gly M203 by Leu), YLH (Tyr L128 by His), FLY

(Phe L146 by Tyr), FLA (Phe L146 by Ala) and ELL (Glu

L104 Leu). Apart from RC-membranes, four preparations of

WT- and ELL-purified RCs were used (described below).

Throughout the text, abbreviations of the samples names

with extension ‘‘-RC’’ denote purified RCs, whereas those

without this extension denote RC-enriched membranes.

Prior to measurements, stock solutions of RC-membranes

and purified RCs were diluted with buffer to an absorbance of

0.7 (±5 %) at 760 nm in 1-cm cuvette. Buffer for RC-mem-

branes was 20 mM Tris–HCl (pH 8.0) and for purified RCs the

same with an addition of 0.1 % LDAO (lauryldimethylamine-

N-oxide; Sigma-Aldrich). Sodium ascorbate and o-phenan-

throline were then added to final concentrations of 10 mM

both to all RC-membranes and two samples of purified RCs

(WT-RCoph and ELL-RCoph). Sodium ascorbate reduced P?

to P (the samples were continuously illuminated with weak

background white light forming the state P?QA
-), thus leaving

all the RCs in the closed state with QA
-. Addition of

o-phenanthroline replaced the ubiquinone in the QB binding

site thus blocking electron transfer from QA
- to QB (Gibasie-

wicz et al. 2011). The o-phenanthroline was prepared as a

250 mM stock solution in ethanol yielding final concentration

of ethanol in the sample of 4 %. Additional samples of purified

RCs (WT-RC and ELL-RC) were prepared with 10 mM

sodium ascorbate and 4 % ethanol with no o-phenanthroline

added. Purified RCs are partially devoid of quinone QB and

thus o-phenanthroline was not necessary to keep the fraction of

RCs without quinone QB closed.

The transient absorption measurement system was con-

structed as described previously (Burdzinski et al. 2011).

Briefly, pump pulses (532 nm; 8 ns FWHM) were gener-

ated at a repetition rate of 0.5 Hz by a Q-switched Nd:YAG

laser (Continuum Surelite II). For the probe light, a 150-W

xenon arc lamp (Applied Photophysics) was used in pulsed

mode with a repetition rate of 1 Hz. A monochromator

(Acton Research Spectra Pro 300i) was used to disperse the

probe light which was then detected by photomultiplier

(R928 Hamamatsu) connected to a digital oscilloscope

(Tektronix TDS 680 C). Samples were placed in a quartz

cuvette (1 9 1 cm cross section).

In most cases, transient absorption difference measure-

ments were performed in the range of 435–850 nm for RC-

membranes or 375–835 nm for purified WT-RCs in 15-nm

steps. The smaller spectral range used for RC-membranes

was due to intensive light scattering at shorter wavelengths.

Excitation was at 532 nm and the temporal window of the

measurements was either 13.5 ls (GML, FLY, FLA,

YLH), 27 ls (AMW, YMW, YMF, WT, WT-RC, WT-

RCoph), 54 ls (ELL), or 540 ls (ELL-RC, ELL-RCoph)

for all detection wavelengths. In a few individual cases

(ELL, YMF, and purified WT-RCs), measurements at

selected wavelengths were repeated over a longer time

window (135 or 270 ls). The excitation energy per pulse

was in the range of 0.1–1.1 mJ, and the data were typically

normalized in respect to the excitation energy used for each

sample. All kinetics were results of averaging of 30 traces.

Measurements were conducted under ambient atmo-

sphere apart from a few in an argon atmosphere. The

procedure of deoxygenation of samples was as follows.

Samples were placed in a sealed cuvette and a stream of

argon was directed onto the surface of solution instead of

bubbling into the solution in order to prevent formation of

foam. Argon treatment lasted 20 min and was performed

just before measurement. The efficiency of the described

procedure was tested with the aqueous solution of phena-

lenone, which is a well-known oxygen sensitizer (Schmidt

et al. 1994). The deoxygenation extended the phenalenone

triplet lifetime from 1.7 to 80 ls.

For each sample, steady-state absorption spectra were

taken before and after the transient absorption measurements.

Due to large size of RC-membranes, their spectra were dis-

torted by light scattering particularly contributing at shorter

wavelengths. After each transient absorption experiment, the

lineshape of the RC-membranes absorption spectra were not

significantly changed but for some samples, and background

light scattering was increased somewhat. The small gradual

loss of transparency of these samples during the transient

absorption measurements was monitored during the experi-

ment as a loss of the signal at 600 nm and was corrected for.

Transient absorption kinetic traces were typically fitted with

the sum of two exponentials with or without an offset using the

global analysis algorithm in program Asufit (http://www.pub

lic.asu.edu/*laserweb/asufit/asufit.html) from Arizona State

University and OriginPro. The starting point of fit was at the

maximum of the transient signal at about 150 ns.

Results

Kinetics of decay

Transient absorption kinetics were measured for mem-

brane-embedded WT-RCs, a range of membrane-embedded

engineered RCs and detergent-purified WT- and ELL-RCs
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(see ‘‘Materials and methods’’ section). RCs were treated

with sodium ascorbate and weak background illumination

to reduce QA, blocking charge separation at the radical pair

P?HA
-. With one exception the engineered RCs contained a

single amino acid change that either introduced or removed

a hydrogen bond or charge-dipole interaction with HA, BA

or the P BChls. As described in detail elsewhere (Giba-

siewicz et al. 2011), these changes modify the free energies

of the states P?BA
- and/or P?HA

- in a variety of ways, with

resulting modifications in the rate of charge separation and

charge recombination. The exception was the AMW

engineered RC which lacks a QA ubiquinone such that

charge separation is blocked at P?HA
- without the need for

treatment with ascorbate and background illumination.

Kinetics were measured across a range of wavelengths

following photoexcitation at 532 nm (see ‘‘Materials and

methods’’ section). The absorption of the triplet state of

spheroidenone is expected to exhibit maximum at

*600 nm (Arellano et al. 2004), and a few typical kinetic

traces measured at this wavelength are shown in Fig. 2a.

The major difference between the three traces was their

initial amplitude, reflecting differences in the formation

yield of the carotenoid triplet state. Following the fast

increase of the signal, a *4 ls component (3.8–4.5 ls for

different RCs see Table 1, s1) dominating the overall decay

was observed in all RCs (see normalized traces in inset of

Fig. 2a).

For most RCs, an additional longer decay component

was also observed. In most cases, its amplitude contribu-

tion was the highest at a probe wavelength 750 nm and the

decays at this wavelength is shown in Fig. 2b (traces nor-

malized to initial amplitude are also shown in the inset). In

addition, at 750 nm there was a small raising phase of the

negative signal on a time scale of the first few microsec-

onds after excitation [most clearly visible for the YMF RC-

membranes in Fig. 2b (red)].

Most measurements were performed in a 13.5, 27, or

54 ls time window (see ‘‘Materials and methods’’ section),

but for some samples and wavelengths a longer time

window (135, 270 or 540 ls) was used (purified ELL-

RCs—whole spectrum; ELL, YMF membranes and puri-

fied WT-RCs—selected wavelengths). These experiments

allowed a time constant of 30–60 ls (with an average of

40 ls) for the longer decay component to be determined. A

lifetime value of 40 ls was kept fixed in biexponential

fitting of decays for all samples to account for this com-

ponent. In addition, for purified WT- and ELL-RCs an

additional nondecaying component was observed.

Absorbance difference spectra of purified RCs

Measurements of decay kinetics at a range of wavelengths

allowed the construction of transient absorption difference

spectra which were then analyzed using a global fitting

procedure (van Stokkum et al. 2004) to yield decay-asso-

ciated spectra (DAS). The most complex spectral evolution

was obtained with purified ELL-RCs which had not been

treated with o-phenanthroline (ELL-RC). Data for these

RCs were best fitted with two exponentials and a nonde-

caying component (offset), addition of a third exponential

component not improving the fit significantly. Figure 3a

presents the DAS for the three components of the decay in

ELL-RC. The absorbance changes were measured every

40 ns over a time window of 540 ls. As can be seen, the

whole spectrum was dominated by the shortest (*4-ls)

component except for the region at around 750 nm, cor-

responding to the BPhe absorbance band (Fig. 3c) where

the other two components had a higher amplitude. Data for

the WT-RC collected over a time window of 27 ls
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Fig. 2 Absorbance changes for selected RCs measured at 600 and

750 nm after excitation at 532 nm. a The kinetics reveal decay of the

triplet state of spheroidenone (Car). b The kinetics reveal decay of the

triplet state of BPhe. In the main figures, the kinetics were normalized

to the same excitation energy and sample OD at *760 nm. In the

insets, the kinetics were normalized to the same initial amplitude.

Data in (b) were smoothed using a Savitzky–Golay algorithm with a

10-points window

208 Photosynth Res (2016) 129:205–216

123



(Fig. 3b) could be fitted with two exponentials, but addi-

tion of an offset resulted in an additional featureless DAS

and did not improve the fit significantly. The lineshapes of

the DAS for the WT-RC were similar to those for the ELL-

RC.

Absorbance difference spectra of all RC samples

Figure 4a presents absorbance difference spectra at 150 ns

delay for all the RCs investigated. Data for purified RCs

were collected across a broader spectral range than for RC-

membranes, as they were less scattering at shorter wave-

lengths, allowing observation of an additional positive

band at 420 nm. As can be seen from Fig. 4b, where the

spectra were normalized to the peak at 600 nm, all spectra

were similar in lineshape apart from the depth of the

negative features at 495 and 750 nm. The most distinctive

were the spectra of the ELL and FLA RC-membranes

which had the deepest *750 nm trough and the shallowest

*495 nm trough.

All data were treated with the global analysis algorithm

described above for the purified RCs. Only data for purified

ELL-RCs (with and without o-phenanthroline) required

fitting with two exponentials and an offset. For all other

membrane-bound RCs and purified WT-RCs, a two expo-

nential model without an offset was satisfactory.

DAS of the fast (s1) and slow (s2) lifetime components

of each two-exponential fit are presented in Figs. 5, 6,

respectively. The DAS of the fast component were almost

the same in shape for all RCs, with a dominating positive

signal at *600 nm, a small positive signal at *750 nm,

and a negative signal at *495 nm. The positive value of

this DAS around 750 nm corresponded well with the shape

of the kinetics in Fig. 2b, which showed a short increasing

Table 1 Mean lifetimes of

P?HA
- and lifetimes and yields

of triplet states in RC-

membranes and purified RCs

Sample sPH nsð Þ (Gibasiewicz et al. 2011) s1 lsð Þ UT %Car %BPhe UTCar UTBPhe

AMW 17.0 3.9 0.25 98 2 0.25 0.005

YMF 11.6 4.0 0.21 82 18 0.17 0.037

GML 11.5 3.9 0.41 96 4 0.39 0.018

WT 7.7 4.0 0.14 92 8 0.13 0.010

YMW 7.5 3.9 0.22 90 10 0.19 0.022

YLH 5.4 4.0 0.13 82 18 0.10 0.024

FLY 3.0 4.0 0.05 65 35 0.04 0.019

FLA 2.7 4.3 0.10 57 43 0.06 0.044

ELL 2.2 4.5 0.11 39 61 0.04 0.069

WT-RCoph – 3.9 0.28 86 14 0.24 0.039

WT-RC – 3.8 0.15 75 25 0.11 0.037

ELL-RCoph – 4.1 0.21 69 31 0.14 0.066

ELL-RC – 4.0 0.08 57 43 0.04 0.034

sPH mean lifetime of the state P?HA
2, s1 lifetime of triplet state of Car obtained from biexponential global

analysis, UT total triplet formation yield, %Car;%BPhe percentage contributions of triplet state on Car and

BPhe, UTCar; UTBPhe yields of triplet formation on Car and BPhe. s2, the lifetime of triplet state of BPhe,

was fixed at 40 ls. A possible minor contribution of the triplet state localized on bacteriochlorophyll(s) in

some samples was neglected in the calculations
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Fig. 3 Comparison of decay-associated spectra for WT- and ELL-

purified RCs without o-phenanthroline and the steady-state absorption

spectrum of WT-RCs. a Fit for ELL-RCs over a 540-ls time window.

b Fit for WT-RCs over a 27-ls time window. c Absorption bands

labeled according to the relevant RC cofactors. The DAS were

obtained from a global analysis using the fitting function

DA(k) = A1(k)exp(-t/s1) ? A2(k)exp(-t/s2) ? A3 (with A3 = 0 for

WT-RC). Note the different scales of the ordinate axis for the DAS of

the slow components (right axis)
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phase of the negative signals for YMF and WT-RC. The

major difference between the spectra in Fig. 5 was a dif-

ference in overall amplitude before normalization.

The DAS of the slow component (Fig. 6) showed a clear

minimum at *750 nm, a broad and essentially positive

structure between *660 and *400 nm (Fig. 6a, b), and

the red edge at *395 nm of a negative band for purified

WT-RCs (Fig. 6b, d). The lineshape of this slow compo-

nent DAS was not identical among all RCs (Fig. 6c, d),

with peaks positions being approximately the same but the

relative amplitude of these peaks and detailed structure

differing between RCs. The most strongly diverging DAS

was that for the AMW RC-membranes for which the

absolute negative amplitude at 750 nm was the smallest.

The DAS of the nondecaying component (Fig. 7)

required for fits to data on purified ELL-RCs was similar in

shape to the slow component DAS apart from the structure

of the positive band, which was red shifted in the nonde-

caying component. The high quality of the spectra of this

component was due to the broad time window (540 ls).

The two DAS obtained clearly showed a maximum at

around 650 nm and two minima at around 750 and 530 nm,

and differed from one another mainly in terms of amplitude

(see normalized spectra in the inset of Fig. 7).

The influence of oxygen

Kinetics at 600 and 750 nm for samples of ELL RC-

membranes and ELL-purified RCs without the addition of

o-phenanthroline (ELL-RC) were obtained after argon

treatment as described in Materials and methods. These

kinetics (data not shown) did not show any difference

compared to kinetics measured in an ambient atmosphere.

Discussion

The measurements described above examined the spectral

properties of long-lived states formed after photoexcitation

of membrane-bound or purified RCs in which forward

electron transfer from HA
- to QA was blocked either by

application of ascorbate plus illumination or by a genetic

change in the AMW RC. As recombination of P?HA
-
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absorbance changes measured 150 ns after excitation (at the signal

maximum, *600 nm). a Spectra normalized to the same excitation

energy and sample OD at *760 nm. The absorbance change for WT

RC-membranes was arbitrarily set to 1 at 600 nm. The inset shows a

comparison of maximum amplitudes of the spectra at 600 nm relative

to WT. b Transient absorption spectra normalized to the same
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also in Figs. 5, 6) is from longest to shortest lifetimes of P?HA
- for

RC-membranes, with purified RCs added at the end
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ELL-RC and ELL-RCoph, and 27 ls for the remaining
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occurs in a few tens of nanoseconds, light-induced absor-

bance changes persisting on a microsecond time scale are

attributable to long-lived triplet states. Two such states

were detected in data collected using a range of RCs that

are known to show varying rates of recombination of P?HA
-

and, in those with the slowest recombination, an increased

yield of triplet states (Gibasiewicz et al. 2011).

Attribution of the fast decay component to a Car

triplet state

The DAS of the *4 ls decay component (Fig. 5) can be

ascribed to the triplet state of spheroidenone (Schenck et al.

1984; Arellano et al. 2004), the trough at *495 nm cor-

responding well to the maximum of the broad steady-state

absorption band of the single spheroidenone in the RC

(Fig. 3c). The lifetime of *4 ls is consistent with pub-

lished values for the lifetime of the spheroidenone triplet

state in purple bacterial pigment-protein complexes (RCs,
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LH1, and LH2) of around 4–5 ls (Schenck et al. 1984;

Arellano et al. 2004; Kakitani et al. 2007).

Identification of the slow decay component

as a BPhe triplet state

In most RCs, the most prominent feature of the DAS of the

slow, *40 ls decay component was a trough at *750 nm

(Figs. 3a, b, 6). As can be seen from Fig. 3c, this corre-

sponded well to the lowest energy absorption band of the

two RC BPhes at 756 nm, suggesting that this component

may be attributed to the triplet state of one or both of the

RC BPhes. The shape of this component resembled the

BPhe triplet absorbance difference spectrum acquired in

methanol-acetone solution (Holten et al. 1976), and life-

times of a BPhe triplet state in methanol-acetone, ethanol,

or toluene solutions have been reported to vary between 16

and 30 ls (Holten et al. 1976; Yang et al. 2011) in good

agreement with the average *40 ls time constant

observed in the present work. To our knowledge, the triplet

spectrum of one or both of the BPhes in the RC protein has

not been reported previously. However, a contribution from

photobleaching of the accessory BChls or P, revealing the

triplet states of these molecules, to the carotenoid triplet

spectra has been observed (Lous and Hoff 1989; Frank and

Violette 1989; Angerhofer et al. 1998; Arellano et al. 2004)

and attributed to a mixed population of RCs with and

without Car. No signature of the triplet state of the

accessory BChls was observed in the Qy region in the

present work (i.e., there was a lack of any photobleaching

at 800 nm in the 40 ls DAS, with the possible exception of

data recorded for AMW RC-membranes—Fig. 6c),

although a small trough at *600 nm (corresponding to the

Qx bands of BChl and P) was present in the DAS for some

RC-membranes (Fig. 6a, b) indicating a possibility of a

small admixture of the triplet state of P. As an alternative

attribution, the bleaching at 750 nm could be ascribed to

HA
- in a 3[P?HA

-] state that is in an equilibrium with a 3P

state, but this possibility is challenged by the lack of a

significant photobleaching in the *820–850 nm region

(Fig. 6) where the short-wavelength tail of P Qy photo-

bleaching signal would be expected. The spectra of the

slow component were not identical in shape among all the

RC samples (Fig. 6c, d). This may be due to the above-

mentioned admixing of different states in different contri-

butions (3BChl or 3P) to the 3BPhe triplet state, or the

influence of point mutations on the shape of the 3BPhe

spectrum. The possibility of 3BPhe state formation has

previously been suggested on the basis that singlet oxygen

formation was found to be higher in thermally treated RCs

with induced pheophytinization of BChls (Uchoa et al.

2008).

Identification of the nondecaying component

Photobleaching bands in the DAS of the nondecaying

component at 530 and 750 nm corresponded well with the

absorption bands of BPhe in the steady-state spectrum,

suggesting that this component could also be ascribed to

the triplet state of one or both BPhes. This component

was required for fitting only for purified ELL-RCs and,

comparing the lineshapes of the slow component DAS for

WT-RCs (Fig. 3b, red) and the slow and nondecaying

components for ELL-RCs (Fig. 3a, red and blue), it seems

plausible that the single DAS for the WT-RC is equiva-

lent to the sum of the two DAS for the ELL-RC. This

statement is supported by the presence of a nondecaying

component in the WT-RC kinetics in Fig. 2b. By com-

paring spectra of the nondecaying component (Fig. 3a, 7)

with those of the 40 ls component (Fig. 3a, b), it can be

seen that there are differences in the positive band below

700 nm, this band being red shifted in the spectra of the

nondecaying component. The origin of this could be

heterogeneity of sample or the protein dynamics on the

microsecond time scale.

Effect of deoxygenation

As it was described in Results, there is no influence of

deoxygenation on the lifetime of the triplet state of both

BPhe and Car. The role of spheroidenone is to prevent RCs

from damage from singlet oxygen by quenching the triplet

state of P (Cogdell et al. 2000) so it is not surprising that

the oxygen does not quench 3Car. On the other hand, it is

reported in the literature that BPhe should sensitize singlet

oxygen (Uchoa et al. 2008). The likely reason why this

sensitization was not observed in described experiments is

the presence of ascorbate, which was reported to be triplet

suppressor. Concentration of the order of 50 lM of

ascorbate can decrease singlet oxygen formation by 20 %

(Uchoa et al. 2008), so 10 mM concentration could sup-

press it totally.

Relative contributions of the two triplet states

and their absolute yields

Neglecting a possible minor contribution from 3P and/or
3BChl as discussed above, the molar fractions of the triplet

states located on BPhe and Car were estimated by assum-

ing that the amplitude of the faster decay at 495 nm came

only from photobleaching of Car and the sum of the

amplitudes of the two components at 750 nm came from

photobleaching of BPhe. Thus, the percentage contribution

of each triplet state was determined from the following

formula (see ‘‘Appendix’’ for full derivation):
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%Car ¼
1:09 � A1;495 nm

A1;750 nm þ A2;750 nm þ 1:09 � A1;495 nm

� 100%

ð1Þ
%BPhe ¼ 100%�%Car: ð2Þ

The resulting percentage populations are presented in

Table 1, and ranged from *98 %/2 % to 39 %/61 % for
3Car/3BPhe.

On the assumption that A1;495 nm is a specific measure of

the 3Car formed, one can also calculate the total yield of

triplet (uT) in arbitrary units to compare between samples:

UT ¼ A1;495 nm

%Car

� 100%: ð3Þ

It has been reported that in QA-reduced WT-RCs, the

yield of triplet formation is 0.15 (Parson and Cogdell

1975; Michel-Beyerle et al. 1980; Schenck et al. 1982).

This value was obtained for purified RCs reduced with

sodium dithionite, which is most similar to our purified

WT-RC sample with sodium ascorbate and without

o-phenanthroline. Thus, a value of 0.15 was ascribed to

the triplet yield for this preparation of WT-RC and all

other values were calculated relative to this. The resulting

total triplet formation yields are presented in Table 1

along with absolute contributions from 3Car and 3BPhe.

One can see that almost the same value of total triplet

yield was obtained for WT RC-membranes (0.14) as for

purified WT-RC (0.15). Mutation AMW leads to genetic

depletion of QA in RC, and the triplet formation yield

obtained for this RC (0.25) corresponded well with a

value of 0.32 ± 0.04 obtained for purified WT-RCs with

chemical depletion of QA (Chidsey et al. 1984). This

observation reinforces our confidence in the correctness of

the calculation algorithm.

Mutations revealed a correlation between P1HA
2

lifetime and triplet yields

A factor which could affect the yield of triplet states in a

mutated RC is the impact of the mutation on the mean

lifetime of P?HA
- state. This was determined in previous

work on this set of mutated membrane-embedded RCs

(Gibasiewicz et al. 2011) and the mean lifetimes obtained

are presented in Table 1. The plots in Figs. 8a, b present

the dependence of the relative yields of 3Car and 3BPhe,

and absolute yields of triplet, respectively, on the mean

lifetime of P?HA
-. As can be seen from Fig. 8b, the total

triplet yield increased with increasing P?HA
- lifetime, and

this was due to an increase in the yield of carotenoid triplet.

Although the absolute level of 3BPhe formation did not

vary greatly (Fig. 8b), its relative contribution was

particularly strong in those mutants that had a strongly

accelerated rate of P?HA
- decay (Fig. 8a). This may be

caused by point mutations affecting the energy levels of

chromophores in branch A.

Effect of o-phenanthroline on triplet yields

in purified RCs

The yield of total triplet formation in purified WT-RCs

with o-phenanthroline (WT-RCoph—0.28) was similar to

that in membranes mutant RCs lacking QA (AMW—0.25).

It was reported (Gibasiewicz and Pajzderska 2008) that

o-phenanthroline slows down P?HA
- recombination by

screening the negative charge on QA
- that makes this RC

similar to the AMW RCs and explains the similarity

between these two. On the other hand, the total triplet
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yields of both WT- and ELL-purified RCs without

o-phenanthroline were significantly lower than the

respective yields for purified RCs with o-phenanthroline.

This effect may be caused by (a) faster P?HA
- recombina-

tion in the absence of o-phenanthroline and/or (b) presence

of a significant fraction of RCs in open state, i.e., con-

taining quinone QB that accepts electrons from QA
-, RCs

being unable to form triplet states due to very short lifetime

of P?HA
- in purified RCs without o-phenanthroline. Both

for WT- and ELL-purified RCs, the positive influence of

o-phenanthroline on the Car triplet yield is qualitatively the

same as the effect of this compound on the total triplet

yield (Table 1). In the case of purified ELL-RCs, also BPhe

triplet yield increases after addition of o-phenanthroline,

although the effect is less spectacular. Oppositely, the

BPhe triplet yield for purified WT-RCs is almost unchan-

ged after addition of o-phenanthroline. These observations

suggest that in purified RCs there is no clear positive

correlation between the lifetimes of P?HA
- and BPhe triplet

yields, similarly as it was shown for RC-enriched mem-

branes (Fig. 6b).

Possible mechanisms for the formation of 3BPhe

There are at least three possible explanations for the for-

mation of a 3BPhe state: (1) the transfer of a triplet excited

state from primary donor to the HB BPhe with some

probability in all RCs, (2) formation of a triplet state of

BPhe directly from its singlet state by intersystem crossing

(ISC), bearing in mind that an excitation wavelength of

532 nm was used which corresponds to the overlapping QX

bands of the two RC BPhes, or (3) the occurrence of a

subpopulation of damaged RCs.

Regarding mechanism 1, it is well established that 3P is

quenched by carotenoid through the intermediate formation

of the triplet state of the accessory BChl BB (see Intro-

duction), a reaction that is thermally activated. One pos-

sibility therefore is that the energy of 3P is transferred with

some probability from BB to the HB BPhe rather than to the

Car. 3BPhe is almost not observed in RC-membranes

containing WT-RCs and so probably energy levels are

normally unfavorable for this triplet transfer. The fact that

higher levels of 3BPhe triplet were seen in both samples of

purified WT-RC could be explained by a shift in these

energy levels that activates a low yield of triplet energy

transfer from 3P to 3BPhe. In support of this, it is well

known that charge separation in WT-RCs in RC-mem-

branes is somewhat slower than in purified WT-RCs (P*

lifetime of 5 ps versus 3–3.5 ps). It is less easy to explain

why the mutations YMW, YLH, FLY, FLA, and ELL

would also affect the yield of a HB triplet in RC-mem-

branes, as each of these mutations is in the vicinity of P or

the A-branch BA and HA. One possible explanation is that

the observed triplet state is localized on BPhe HA rather

than HB. However, given the well-established mechanism

(Angerhofer et al. 1998) that the triplet naturally goes via

the B branch through BB to the Car, this would seem to

favor BPhe HB as the final carrier of the triplet. Another

possibility is triplet transfer from 3P to HB through the Car.

As it can be seen in Fig. 5, for most of the samples the fast

component DAS was slightly positive at around 750 nm

which could be the signature of transfer of triplet state

energy from the Car to BPhe. The same process is also seen

in Fig. 2b as a small raising phase of the negative signals in

YMF and WT-RC kinetics. This route would also favor HB

as the triplet acceptor as it is much closer to Car than HA.

However, this positive signal could be also a tail of triplet–

triplet absorption of Car so this requires further

investigation.

Regarding mechanism 2, it has been proposed in the

literature that a triplet state may be formed on BPhe by

intersystem crossing (Uchoa et al. 2008), but on the other

hand results from EPR spectroscopy have been presented

that show that 3BPhe formation via intersystem crossing is

unlikely (Marchanka et al. 2007). Although in the present

study the RCs were excited at 532 nm, implying initial

formation of the singlet excited states of HA/HB, expecta-

tions from the well-characterized mechanism of RC energy

transduction, is that excited state energy should be passed

on a subpicosecond time scale to P* (Stanley et al. 1996;

Jordanides et al. 2001), or that charge separation should be

initiated from an alternative state such as BA* (van Bre-

derode et al. 1997). Given this, it seems unlikely that a

persistent 3BPhe state with a lifetime of tens of microsec-

onds could be explained by direct formation of HA* or HB*

after 532 nm excitation followed by intersystem crossing.

Also, were this to be a viable mechanism then one might

reasonably expect to see a similar level of 3BPhe in all of

the RCs tested, as the mutations investigated had only very

small effects on the absorbance spectrum of the RC.

Regarding mechanism 3, the nature of the RC samples

used in this study makes it unlikely that the observed
3BPhe signal could be due to RC damage. For the bulk of

the samples in which this signal was detected, the RC was

not removed from the native membrane, providing no

opportunity for loss of the native carotenoid during a

purification procedure. Many of the mutant RCs studied

have had their structures determined to a good resolution

by X-ray crystallography and the resulting data show no

indication of structural changes around the carotenoid

binding site.

Finally, evidence was seen for the presence of this
3BPhe state in purified RCs as well as membrane-embed-

ded complexes, which rules out the possibility that the

observed state is associated with pigments located in the

membrane outside the RC.
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In the view of the presented results and discussion

therefore, mechanism 1 seems to be most plausible.

However, further investigation is necessary to explore the

mechanism of 3BPhe formation in detail.

Conclusions

Obtained kinetics and spectra of WT-RCs and mutant RCs

with an altered rate of P?HA
- recombination produced new

insight into triplet states formed following photoexcitation. In

all samples, the triplet state of spheroidenone was observed

with lifetime of *4 ls. Neither the introduction of point

mutations around A-branch chromophores nor the isolation

procedure affected the shape of the carotenoid triplet

absorption spectrum or its lifetime. For most of the samples, a
3BPhe state was observed with lifetime of *40 ls. In RC-

membranes, both 3Car and 3BPhe formation yields depend on

the P?HA
- lifetime but in an opposite way. The mechanism of

3BPhe formation needs further investigation.
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Appendix

Assuming that the 495-nm minimum in the fast DAS

derives only from photobleaching of Car and the 750-nm

minimum in both slow and nondecaying DASes derives

exclusively from photobleaching of BPhe, the following

can be written from Lambert–Beer law:

A1;495 nm ¼ DcCar � eCar;495 nm � l ðA1Þ

A2;750 nm þ A3;750 nm ¼ DcBPhe � eBPhe;750 nm � l; ðA2Þ

where DcCar and DcBPhe are the laser-depleted con-

centration of Car and BPhe in ground state, respectively, e
the steady-state molar extinction coefficient, and l is the

optical path length. Thus, the ratio of triplet formation

yields for Car and BPhe is the following:

UCar

UBPhe

¼ DcCar

DcBPhe

¼ A1;495 nm

A2;750 nm þ A3;750 nm

� eBPhe;750 nm

eCar;495 nm

: ðA5Þ

The ratio of molar extinction coefficients can be

obtained from comparison of steady-state absorption

spectra of WT- and carotenoid-less (GML point mutation)-

purified RCs. The difference between them is the spectrum

of the carotenoid itself. It is assumed that at 750 nm only

BPhe absorbs and there are two BPhe molecules per RC

with the same contribution to absorption. By comparing

these spectra (data not shown) one gets the following:

eBPhe;750 nm

eCar;495 nm

¼ ABPhe;750 nm=2

ACar;495 nm

¼ 1:09: ðA4Þ

Using ratio of triplet formation yields, one can get

percentage contribution of Car and BPhe in the total triplet

in RC:

%Car ¼
UCar

UBPhe

UCar

UBPhe
þ 1

� 100%

¼ 1:09 � A1;495 nm

A2;750 nm þ A3;750 nm þ 1:09 � A1;495 nm

� 100%

ðA5Þ
%BPhe ¼ 100%�%Car: ðA6Þ
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